Journal of Electronic Materials

, Volume 48, Issue 3, pp 1634–1642 | Cite as

Investigation of Structural and Elastic Stability, Electronic, Magnetic, Thermoelectric, Lattice-Dynamical and Thermodynamical Properties of Spin Gapless Semiconducting Heusler Alloy Zr2MnIn Using DFT Approach

  • Pratik D. PatelEmail author
  • Satyam Shinde
  • Sanjay D. Gupta
  • Prafulla K. Jha


In recent times, spin gapless semiconductors (SGS) have attracted much attention as a promising candidate for spintronics and thermoelectric applications due to their high carrier concentration and good thermoelectric figure of merit. In this paper, we have carried out a systematic theoretical investigation of the structural, elastic, thermal, electronic, magnetic, thermoelectric, lattice dynamical and thermodynamical properties of Zr2MnIn using density functional theory (DFT) based first principle calculations. The band structure calculation shows indirect band gap in a spin down channel and zero band gap in a spin up channel of valence and conduction bands confirming the spin gapless semiconducting nature of Zr2MnIn. The structural and dynamical stability of the antiferromagnetic phase of Zr2MnIn has also been investigated. Magnetization in Zr2MnIn originates due to the d state electrons of Zr atoms, which follows the Slater Pauling rule: Mt = Zt − 18. Phonon dispersion curves exhibit real frequency of phonon modes throughout the Brillouin zone, which confirms the dynamical stability of the antiferromagnetic phase of Zr2MnIn. Thermodynamical properties including specific heat and Debye temperature have been calculated using phonon density of states. A higher value of the thermoelectric figure of merit 1.25, predicts that this alloy as good thermoelectric properties with better output efficiency.


Spin gapless semiconductor (SGS) structural and elastic stability electronic structure magnetic moment thermoelectric and lattice dynamical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are thankful to Pandit Deendayal Petroleum University (PDPU) for providing necessary computational facilities. One of us (PKJ) acknowledges DST India, for financial assistance.


  1. 1.
    Z. Bai, L. Shen, G. Han, and Y.P. Feng, Spin 2, 1230006 (2012).CrossRefGoogle Scholar
  2. 2.
    C. Felser, G.H. Fecher, and B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007).CrossRefGoogle Scholar
  3. 3.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).CrossRefGoogle Scholar
  4. 4.
    K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002).CrossRefGoogle Scholar
  5. 5.
    W.E. Pickett and J.S. Moodera, Phys. Today 54, 39 (2001).CrossRefGoogle Scholar
  6. 6.
    C. Felser and A. Hirohata, Heusler Alloys (Berlin: Springer, 2015).Google Scholar
  7. 7.
    X. Wang, Z. Cheng, J. Wang, and G. Liu, J. Mater. Chem. C 4, 8535 (2016).CrossRefGoogle Scholar
  8. 8.
    I. Galanakis, K. Özdoğan, B. Aktaş, and E. şaşıoğlu, Appl. Phys. Lett. 89, 042502 (2006).CrossRefGoogle Scholar
  9. 9.
    M. Gilleßen and R. Dronskowski, J. Comput. Chem. 30, 1290 (2009).CrossRefGoogle Scholar
  10. 10.
    S. Skaftouros, K. Özdoğan, E. ŞaŞıoğlu, and I. Galanakis, Phys. Rev. B 87, 024420 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Yousuf and D.C. Gupta, Mater. Chem. Phys. 192, 33 (2017).CrossRefGoogle Scholar
  12. 12.
    K. Hayashi, M. Eguchi, and Y. Miyazaki, J. Electron. Mater. 46, 2710 (2016).CrossRefGoogle Scholar
  13. 13.
    T. Hellal, D. Bensaid, B. Doumi, A. Mohammadi, F. Benzoudji, Y. Azzaz, and M. Ameri, Chin. J. Phys. 55, 806 (2017).CrossRefGoogle Scholar
  14. 14.
    H.V. Leuken and R.A.D. Groot, Phys. Rev. Lett. 74, 1171 (1995).CrossRefGoogle Scholar
  15. 15.
    V. Chernenko, E. Cesari, V. Kokorin, and I. Vitenko, Scr. Metall. Mater. 33, 1239 (1995).CrossRefGoogle Scholar
  16. 16.
    X. Wang, Z. Cheng, J. Wang, H. Rozale, L. Wang, Z. Yu, J. Yang, and G. Liu, J. Alloys Compd. 686, 549 (2016).CrossRefGoogle Scholar
  17. 17.
    X. Wang, Z. Cheng, R. Khenata, Y. Wu, L. Wang, and G. Liu, J. Magn. Magn. Mater. 444, 313 (2017).CrossRefGoogle Scholar
  18. 18.
    X. Wang, Z. Cheng, J. Wang, X.-L. Wang, and G. Liu, J. Mater. Chem. C 4, 7176 (2016).CrossRefGoogle Scholar
  19. 19.
    A. Odagawa, T. Kanno, H. Adachi, H. Sato, I. Inoue, H. Akoh, M. Kawasaki, and Y. Tokura, Thin Solid Films 486, 75 (2005).CrossRefGoogle Scholar
  20. 20.
    I. Galanakis, K. Özdoğan, E. ŞaŞioğlu, and S. Blügel, J. Appl. Phys. 115, 093908 (2014).CrossRefGoogle Scholar
  21. 21.
    L. Bainsla, A.I. Mallick, M. Manivel Raja, A.A. Coelho, A.K. Nigam, D.D. Johnson, A. Aftab, and K.G. Suresh, Phys. Rev. B 92, 045201 (2015).CrossRefGoogle Scholar
  22. 22.
    B.G. Janesko, Top. Curr. Chem. Density Funct. 365, 25 (2014).CrossRefGoogle Scholar
  23. 23.
    G.K. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Baroni, P. Giannozzi, and E. Isaev, Rev. Mineral. Geochem. 71, 39 (2010).CrossRefGoogle Scholar
  25. 25.
    T. Seddik, R. Khenata, A. Bouhemadou, A.H. Reshak, F. Semari, and B. Amrani, Comput. Mater. Sci. 49, 372 (2010).CrossRefGoogle Scholar
  26. 26.
    A. Birsan and V. Kunscer, J. Magn. Magn. Mater. 406, 282 (2016).CrossRefGoogle Scholar
  27. 27.
    M. Zemouli, A. Boudali, B. Doumi, A. Mokaddem, M. Elkeurti, F. Saadaoui, and M.D. Khodja, J. Supercond. Novel Magn. 29, 3187 (2016).CrossRefGoogle Scholar
  28. 28.
    S.M. Shinde, S.D. Gupta, S.K. Gupta, and P.K. Jha, Comput. Mater. Sci. 92, 69 (2014).CrossRefGoogle Scholar
  29. 29.
    S. Pugh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954).CrossRefGoogle Scholar
  30. 30.
    M.A. Hadi, M.S. Ali, S.H. Naqib, and A.K.M.A. Islam, Chin. Phys. B 26, 037103 (2017).CrossRefGoogle Scholar
  31. 31.
    Y. Rakita, S.R. Cohen, N.K. Kedem, G. Hodes, and D. Cahen, MRS Commun. 5, 623 (2015).CrossRefGoogle Scholar
  32. 32.
    S. Ouardi, Thermoelectric and Spintronics Applications, Ph.D. Thesis (2012).Google Scholar
  33. 33.
    J.-C. Zheng, Front. Phys. China 3, 269 (2008).CrossRefGoogle Scholar
  34. 34.
    K. Kaur and R. Kumar, Chin. Phys. B 25, 026402 (2016).CrossRefGoogle Scholar
  35. 35.
    P.D. Patel, S. Shinde, S.D. Gupta, S.D. Dabhi, and P.K. Jha, Comput. Condens. Matter 15, 61 (2018).CrossRefGoogle Scholar
  36. 36.
    S. Yousuf and D.C. Gupta, Indian J. Phys. 91, 33 (2016).CrossRefGoogle Scholar
  37. 37.
    S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005).CrossRefGoogle Scholar
  38. 38.
    S.D. Gupta, S.K. Gupta, and P.K. Jha, Comput. Mater. Sci. 49, 910 (2010).CrossRefGoogle Scholar
  39. 39.
    N.M. Astik, H. Soni, P.K. Jha, and V. Sathe, Physica B 541, 103 (2018).CrossRefGoogle Scholar
  40. 40.
    M. Talati and P.K. Jha, Phys. Rev. B 74, 132105 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Pratik D. Patel
    • 1
    Email author
  • Satyam Shinde
    • 1
  • Sanjay D. Gupta
    • 2
  • Prafulla K. Jha
    • 3
  1. 1.Department of Physics, School of TechnologyPandit Deendayal Petroleum UniversityRaisan, GandhinagarIndia
  2. 2.Department of PhysicsDr. S & S S Ghandhy, Government Degree Engineering CollegeSuratIndia
  3. 3.Department of Physics, Faculty of ScienceMaharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations