Journal of Electronic Materials

, Volume 48, Issue 3, pp 1531–1539 | Cite as

Cobalt Sulfide/Reduced Graphene Oxide Nanocomposite with Enhanced Performance for Supercapacitors

  • Jia Zhu
  • Wentao Zhou
  • Yazhou Zhou
  • Xiaonong Cheng
  • Juan YangEmail author


A cobalt sulfide decorated reduced graphene oxide (CoS/rGO) nanocomposite was successfully synthesized via a facile one-step hydrothermal route assisted by ethylenediamine. The crystalline phase, structure and morphology of the products were systematically characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, nitrogen (N2) absorption–desorption isotherm, Raman spectra and thermogravimetric analysis. The results show that CoS nanoparticles with the size of 30–100 nm are well dispersed on or anchored in the creasy rGO sheets substrate. Combining the CoS compound nature with the rGO outstanding characteristics, the as-obtained CoS/rGO as an electrode for a supercapacitor harvests high specific capacitance, excellent long-cycle stability and remarkable high-rate capability, which are all superior to those of pristine CoS. Importantly, this nanocomposite possesses a specific capacitance of 813 F g−1 at 0.5 A g−1 (about 2 times that of pure CoS) and excellent cycling stability with 91.2% capacitance retention after 1000 repetitive charge–discharge cycles. It is noteworthy that this approach can be readily applicable to the nanoparticle decoration of graphene sheets and the preparation of other graphene-based nanocomposites for supercapacitors.


Cobalt sulfide reduced graphene oxide nanocomposite supercapacitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by Natural Science Foundation of China (Grant Nos. 51572114, 51672112, 51702129).


  1. 1.
    E.I. Gkanas and M. Khzouz, Renew. Energy 111, 484 (2017).CrossRefGoogle Scholar
  2. 2.
    M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, and C.H. Chia, Curr. Appl. Phys. 14, 1564 (2014).CrossRefGoogle Scholar
  3. 3.
    P. Sharma and T.S. Bhatti, Energy Convers. Manag. 51, 2901 (2010).CrossRefGoogle Scholar
  4. 4.
    W.H. Zuo, R.Z. Li, C. Zhou, Y.Y. Li, J.L. Xia, and J.P. Liu, Adv. Sci. 4, 1600539 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).CrossRefGoogle Scholar
  6. 6.
    B.S. Singu, S.E. Hong, and K.R. Yoon, J. Solid State Electrochem. 21, 3215 (2017).CrossRefGoogle Scholar
  7. 7.
    L. Khandare and S. Terdale, Appl. Surf. Sci. 418, 22 (2017).CrossRefGoogle Scholar
  8. 8.
    F. Tao, Y.Q. Zhao, G.Q. Zhang, and H.L. Li, Electrochem. Commun. 9, 1282 (2007).CrossRefGoogle Scholar
  9. 9.
    Y. Li, S.T. Liu, W. Chen, S. Li, L.L. Shi, and Y. Zhao, J. Alloys Compd. 712, 139 (2017).CrossRefGoogle Scholar
  10. 10.
    C.K. Ranaweera, Z. Wang, E. Alqurashi, P.K. Kahol, P.R. Dvomic, B.K. Gupta, K. Ramasamy, A.D. Mohite, G. Gupta, and R.K. Gupta, J. Mater. Chem. A 4, 9014 (2016).CrossRefGoogle Scholar
  11. 11.
    L. Zhang, H.B. Wu, and X.W. Lou, Chem. Commun. 48, 6912 (2012).CrossRefGoogle Scholar
  12. 12.
    J.C. Xing, Y.L. Zhu, Q.W. Zhou, X.D. Zheng, and Q.J. Jiao, Electrochim. Acta 136, 550 (2014).CrossRefGoogle Scholar
  13. 13.
    J.Y. Lin, Y.T. Tsai, S.Y. Tai, Y.T. Lin, C.C. Wan, Y.L. Tung, and Y.S. Wu, J. Electrochem. Soc. 160, D46 (2013).CrossRefGoogle Scholar
  14. 14.
    C.J. Raj, M. Rajesh, R. Manikandan, J.Y. Sim, K.H. Yu, S.Y. Park, J.H. Song, and B.C. Kim, Electrochim. Acta 247, 949 (2017).CrossRefGoogle Scholar
  15. 15.
    J.J. Zhang, Z.X. Chen, Y. Wang, and H. Li, Energy 113, 943 (2016).CrossRefGoogle Scholar
  16. 16.
    X.M. Wu, Q.G. Wang, W.Z. Zhang, Y. Wang, and W.X. Chen, Eletrochim. Acta 211, 1066 (2016).CrossRefGoogle Scholar
  17. 17.
    H.Y. Qin, S. Yang, W.L. Zhao, Z.C. Yang, X. Li, H.J. Li, and P. Yao, Appl. Surf. Sci. 420, 77 (2017).CrossRefGoogle Scholar
  18. 18.
    Y.Y. Zheng, J. Xu, Y. Zhang, X.S. Yang, Y.J. Zhang, and Y.Y. Shang, New J. Chem. 42, 150 (2018).CrossRefGoogle Scholar
  19. 19.
    S. Akbulut, M. Yilmaz, S. Raina, S.H. Hsu, and W.P. Kang, J. Appl. Electrochem. 47, 1035 (2017).CrossRefGoogle Scholar
  20. 20.
    B.H. Qu, Y.J. Chen, M. Zhang, L.L. Hu, D.N. Lei, B.A. Lu, Q.H. Li, Y.G. Wang, L.B. Chen, and T.H. Wang, Nanoscale 4, 7810 (2012).CrossRefGoogle Scholar
  21. 21.
    J.H. Shi, X.C. Li, G.H. He, L. Zhang, and M. Li, J. Mater. Chem. A 3, 20619 (2015).CrossRefGoogle Scholar
  22. 22.
    Y. Wei, S.Y. Zhang, H.L. Niu, C.J. Mao, J.M. Song, B.K. Jin, and Y.P. Tian, J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 80 (2017).CrossRefGoogle Scholar
  23. 23.
    Y. Wang, J. Tang, B. Kong, D.S. Jia, Y.H. Wang, T.C. An, L.J. Zhang, and G.F. Zheng, RSC Adv. 5, 6886 (2015).CrossRefGoogle Scholar
  24. 24.
    W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  25. 25.
    Y. Wang, Y.M. Li, L.H. Tang, J. Lu, and J.H. Li, Electrochem. Commun. 11, 889 (2009).CrossRefGoogle Scholar
  26. 26.
    K. Dai, D.P. Li, L.H. Lu, Q. Liu, J.L. Lv, and G.P. Zhu, RSC Adv. 4, 29216 (2014).CrossRefGoogle Scholar
  27. 27.
    W. Xiao, W. Zhou, Y. Zhang, L. Tian, H. Liu, and Y. Pu, J. Nanomater. 2016, 6201546 (2016).CrossRefGoogle Scholar
  28. 28.
    G.C. Huang, T. Chen, Z. Wang, K. Chang, and W.X. Chen, J. Power Sources 235, 122 (2013).CrossRefGoogle Scholar
  29. 29.
    A.C. Ferrari, Solid State Commun. 143, 47 (2007).CrossRefGoogle Scholar
  30. 30.
    H.L. Lin, F. Liu, X.J. Wang, Y.N. Ai, Z.Q. Yao, L. Chu, S. Han, and X.D. Zhuang, Electrochim. Acta 191, 705 (2016).CrossRefGoogle Scholar
  31. 31.
    L.L. Fan, X.F. Li, B. Yan, X.J. Li, D.B. Xiong, D.J. Li, H. Xu, X.F. Zhang, and X.L. Sun, Appl. Energy 175, 529 (2016).CrossRefGoogle Scholar
  32. 32.
    C.Y. Chen, Z.Y. Shi, Z. Yang, and H.T. Chang, J. Power Sources 215, 43 (2012).CrossRefGoogle Scholar
  33. 33.
    K.J. Huang, J.Z. Zhang, G.W. Shi, and Y.M. Liu, Mater. Lett. 131, 45 (2014).CrossRefGoogle Scholar
  34. 34.
    C. Xu, Y. Jing, J.R. He, K.R. Zhou, Y.F. Chen, Q. Li, J. Lin, and W.L. Zhang, J. Alloys Compd. 708, 1178 (2017).CrossRefGoogle Scholar
  35. 35.
    J. Zhu, Y. Wei, Y.Z. Zhou, and J. Yang, Ceram. Int. 44, 1836 (2018).CrossRefGoogle Scholar
  36. 36.
    S. Zhang, C. Li, H.Q. Xiao, G.J. Wei, Y. Zhou, Z.J. Wang, J. Zhang, and C.H. An, J. Nanopart. Res. 19, 202 (2017).CrossRefGoogle Scholar
  37. 37.
    F.L. Luo, J. Li, H.Y. Yuan, and D. Xiao, Electrochim. Acta 123, 183 (2014).CrossRefGoogle Scholar
  38. 38.
    J. Zhu, L. Xiang, D. Xi, Y.Z. Zhou, and J. Yang, Bull. Mater. Sci. 41, 54 (2018).CrossRefGoogle Scholar
  39. 39.
    C.Q. Zhang, Q.D. Chen, and H.B. Zhan, ACS Appl. Mater. Interfaces 8, 22977 (2016).CrossRefGoogle Scholar
  40. 40.
    C. Jiang, B. Zhao, J.Y. Cheng, J.Q. Li, H.J. Zhang, Z.H. Tang, and J.H. Yang, Electrochim. Acta 173, 399 (2015).CrossRefGoogle Scholar
  41. 41.
    J.W. Lee, T. Ahn, D. Soundararajan, J.M. Ko, and J.D. Kim, Chem. Commun. 47, 6305 (2011).CrossRefGoogle Scholar
  42. 42.
    D. Ghosh and C.K. Das, ACS Appl. Mater. Interfaces 7, 1122 (2015).CrossRefGoogle Scholar
  43. 43.
    X.M. Feng, N.N. Chen, J.H. Zhou, Y. Li, Z.D. Huang, L. Zhang, Y.W. Ma, L.H. Wang, and X.H. Yan, New J. Chem. 39, 2261 (2015).CrossRefGoogle Scholar
  44. 44.
    X.M. Song, L.C. Tan, X.L. Wang, L. Zhu, X.Q. Yi, and Q. Dong, J. Electroanal. Chem. 794, 132 (2017).CrossRefGoogle Scholar
  45. 45.
    T. Wu, J. Li, L. Hou, C. Yuan, L. Yang, and X. Zhang, Electrochim. Acta 81, 172 (2012).CrossRefGoogle Scholar
  46. 46.
    K. Subramani, N. Sudhan, R. Divya, and M. Sathish, RSC Adv. 7, 6648 (2017).CrossRefGoogle Scholar
  47. 47.
    J.Y. Ye, Z. Li, Z. Dai, Z.Y. Zhang, M.Q. Guo, and X.J. Wang, J. Electron. Mater. 45, 4237 (2016).CrossRefGoogle Scholar
  48. 48.
    Y.A. Kumar, S.S. Rao, D. Punnoose, C.V. Tulasivarma, C. Gopi, K. Prabakar, H.J. Kim, and R. Soc, Open Sci. 4, 170427 (2018).Google Scholar
  49. 49.
    S.B. Kale, A.C. Lokhande, R.B. Pujari, and C.D. Lokhande, J. Colloid Interface Sci. 532, 491 (2018).CrossRefGoogle Scholar
  50. 50.
    Q. Xu, D.L. Jiang, T.Y. Wang, S.C. Meng, and M. Chen, RSC Adv. 6, 55039 (2016).CrossRefGoogle Scholar
  51. 51.
    Y.M. Fan, Y.C. Liu, X.B. Liu, Y.N. Liu, and L.Z. Fan, Electrochim. Acta 249, 1 (2017).CrossRefGoogle Scholar
  52. 52.
    M. Shahraki, S. Elyasi, H. Heydari, and N. Dalir, J. Electron. Mater. 46, 4948 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China

Personalised recommendations