Advertisement

The Evolution of IMCs in Single Crystal Sn3.0Ag0.5Cu and Sn3.0Ag3.0Bi3.0In BGA Solder Joints with Au/Ni/Cu Pads Under Current Stressing

  • Yu Tian
  • Yishu WangEmail author
  • Fu Guo
  • Limin Ma
  • Jing Han
Article
  • 2 Downloads

Abstract

The growth behavior of intermetallic compound (IMC) in single crystal Sn3.0Ag0.5Cu (SAC305) and Sn3.0Ag3.0Bi3.0In (SABI333) ball grid array solder joints with Au/Ni/Cu pads under 104 A/cm2 current stressing was investigated. Characterization by scanning electron microscopy and electron backscattered diffraction mapping were utilized to identify the microstructure and crystal orientation of solder joints. The AuSn4 IMC particles in the SAC305 solder matrix were formed along the electron flow direction and c-axis direction of Sn. On the other hand, it was observed that the Au(Sn0.83, In0.17)4 IMC particles generated in SABI333 solder matrix decomposed from needle-like morphology into small pieces of Au(Sn0.23, In0.77)2 during current stressing. This phenomenon depends on the different diffusion rate and opposite migration direction of Sn and In atoms, which have different driving forces. Moreover, the results showed that the growth behavior of IMC particles in SAC305 solder joints was significantly dependent on the c-axis direction of Sn, while that of IMCs in SABI333 was almost maintained without polarization effect. This study indicated that SABI333 solder joints under EM service could exhibit a better performance than that of SAC305 solder joints.

Keywords

SABI333 electromigration c-axis Au-Sn-In BGA package 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge the support of this work from the National Natural Science Foundation of China (Grant Numbers 51425101 and 51621003), the Beijing Natural Science Foundation (Grant Numbers 2162005, 2172009, and 2172006), and the Science and Technology Nova Plan of Beijing (Grant Number Z161100004916155).

References

  1. 1.
    A.F. Abd El-Rehim, H.Y. Zahran, and S. AlFaify, J. Mater. Eng. Perform. 27, 344 (2018).CrossRefGoogle Scholar
  2. 2.
    W.Q. Xing, X.Y. Yu, H. Li, L. Ma, W. Zuo, P. Dong, W.X. Wang, and M. Ding, J Alloys Compd. 695, 574 (2017).CrossRefGoogle Scholar
  3. 3.
    H.-Y. Hsiao, Y.-S. Huang, and C. Chen, in 2011 IEEE 13th Electronics Packaging Technology Conference (2011), p. 474.Google Scholar
  4. 4.
    A.F. Abd El-Rehim and H.Y. Zahran, J. Alloys Compd. 695, 3666 (2017).CrossRefGoogle Scholar
  5. 5.
    F. Guo, J. Mater. Sci.: Mater. Electron. 18, 129 (2007).Google Scholar
  6. 6.
    W.R. Osorio, D.R. Leiva, L.C. Peixoto, L.R. Garcia, and A. Garcia, J. Alloys Compd. 562, 194 (2013).CrossRefGoogle Scholar
  7. 7.
    M. He, N. De Leon, and V.L. Acoff, Solder. Surf. Mt. Technol. 22, 4 (2010).CrossRefGoogle Scholar
  8. 8.
    Y. Tian, J. Han, L.M. Ma, and F. Guo, Microelectron. Reliab. 80, 7 (2018).CrossRefGoogle Scholar
  9. 9.
    S.K. Kang, M.G. Cho, P. Lauro, and D.Y. Shih, J. Mater. Res. 22, 557 (2007).CrossRefGoogle Scholar
  10. 10.
    A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.R. Lehman, Y. Xing, and E.J. Cotts, J. Electron. Mater. 33, 1412 (2004).CrossRefGoogle Scholar
  11. 11.
    T.L. Yang, J.J. Yu, C.C. Li, Y.F. Lin, and C.R. Kao, J. Alloys Compd. 627, 281 (2015).CrossRefGoogle Scholar
  12. 12.
    B.F. Dyson, J. Appl. Phys. 37, 2375 (1966).CrossRefGoogle Scholar
  13. 13.
    B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).CrossRefGoogle Scholar
  14. 14.
    D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).CrossRefGoogle Scholar
  15. 15.
    Y. Wang, J. Han, L.M. Ma, Y. Zuo, and F. Guo, J. Electron. Mater. 45, 6095 (2016).CrossRefGoogle Scholar
  16. 16.
    M.L. Huang, J.F. Zhao, Z.J. Zhang, and N. Zhao, Acta Mater. 100, 98 (2015).CrossRefGoogle Scholar
  17. 17.
    K.N. Tu, Microelectron. Reliab. 51, 517 (2011).CrossRefGoogle Scholar
  18. 18.
    L. Ma, X. Guangchen, F. Jia Sun, F. Guo, and X. Wang, J. Mater. Sci. 46, 4896 (2011).CrossRefGoogle Scholar
  19. 19.
    T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, and C.R. Kao, Scr. Mater. 80, 37 (2014).CrossRefGoogle Scholar
  20. 20.
    C.E. Ho, C.H. Yang, and L.H. Hsu, Surf. Coat. Technol. 259, 257 (2014).CrossRefGoogle Scholar
  21. 21.
    Y. Tian, J. Han, and F. Guo, J. Mater. Sci.: Mater. Electron. 28, 10785 (2017).Google Scholar
  22. 22.
    Y. Kim, S. Nagao, T. Sugahara, K. Suganuma, M. Ueshima, H.J. Albrecht, K. Wilke, and J. Strogies, J. Electron. Mater. 43, 4428 (2014).CrossRefGoogle Scholar
  23. 23.
    A. Yamaguchi, Y. Yamashita, A. Furusawa, K. Nishida, T. Hojo, Y. Sogo, A. Miwa, A. Hirose, and K.F. Kobayashi, Mater. Trans. 45, 1282 (2004).CrossRefGoogle Scholar
  24. 24.
    K.-S. Kim, T. Imanishi, K. Suganuma, M. Ueshima, and R. Kato, Microelectron. Reliab. 47, 1113 (2007).CrossRefGoogle Scholar
  25. 25.
    K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, J. Mater. Res. 13, 2859 (1998).CrossRefGoogle Scholar
  26. 26.
    M.S. Yeh, Metall. Mater. Trans. A 34, 361 (2003).CrossRefGoogle Scholar
  27. 27.
    K. Yamanaka, Y. Tsukada, and K. Suganuma, J. Alloys Compd. 437, 186 (2007).CrossRefGoogle Scholar
  28. 28.
    A.T. Wu, M.H. Chen, and C.H. Huang, J. Alloys Compd. 476, 436 (2009).CrossRefGoogle Scholar
  29. 29.
    A.T. Wu and K.H. Sun, J. Electron. Mater. 38, 2780 (2009).CrossRefGoogle Scholar
  30. 30.
    J. Chen, J. Shen, W.D. Xie, and H. Liu, J. Mater. Sci.: Mater. Electron. 22, 1703 (2011).Google Scholar
  31. 31.
    C.C. Jain, S.S. Wang, K.W. Huang, and T.H. Chuang, J. Mater. Eng. Perform. 18, 211 (2009).CrossRefGoogle Scholar
  32. 32.
    H.M. Wu, F.C. Wu, and T.H. Chuang, J. Electron. Mater. 34, 1385 (2005).CrossRefGoogle Scholar
  33. 33.
    Y. Li, F.S. Wu, and Y.C. Chan, J. Mater. Sci.: Mater. Electron. 26, 8522 (2015).Google Scholar
  34. 34.
    S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih, and H.M. Lee, J. Electron. Mater. 38, 2461 (2009).CrossRefGoogle Scholar
  35. 35.
    C.E. Ho, C.H. Yang, P.T. Lee, and C.T. Chen, Scr. Mater. 114, 79 (2016).CrossRefGoogle Scholar
  36. 36.
    C.F. Lin, S.H. Lee, and C.M. Chen, Metall. Mater. Trans. A 43a, 2571 (2012).CrossRefGoogle Scholar
  37. 37.
    P.S. Ho and T. Kwok, Rep. Prog. Phys. 52, 301 (1989).CrossRefGoogle Scholar
  38. 38.
    H. Conrad, Mat Sci Eng a-Struct. 287, 227 (2000).CrossRefGoogle Scholar
  39. 39.
    A. Sawatzky, J. Appl. Phys. 29, 1303 (1958).CrossRefGoogle Scholar
  40. 40.
    K.G. Davis, Metall. Trans. 5, 303 (1974).CrossRefGoogle Scholar
  41. 41.
    E.I. Kharkov, S.Y. Yakushevskiy, G.I. Onopriyenko, and R.F. Alimova, Izv. Akad. Nauk SSSR Met. 1, 56 (1974).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yu Tian
    • 1
  • Yishu Wang
    • 1
    Email author
  • Fu Guo
    • 1
  • Limin Ma
    • 1
  • Jing Han
    • 1
  1. 1.College of Material Science and EngineeringBeijing University of Technology BeijingChina

Personalised recommendations