Advertisement

The Thermionic Vacuum Arc Method for Rapid Deposition of Cu/CuO/Cu2O Thin Film

  • Caner MusaoğluEmail author
  • Suat Pat
  • Reza Mohammadigharehbagh
  • Soner Özen
  • Şadan Korkmaz
Article
  • 5 Downloads

Abstract

Copper oxide (CuOx) thin film has been deposited on glass substrate using the thermionic vacuum arc (TVA) method. The TVA system works in high-vacuum condition. The microstructural, surface, and optical properties were investigated. Reflection planes corresponding to Cu2O, CuO, and Cu crystal networks were detected in the x-ray diffraction (XRD) pattern. According to the XRD results, the deposited thin film was in polycrystalline form. The grain size, Miller indices, dislocation density, and microstrain were calculated. The crystalline size obtained from the CuO reflections was approximately 20 nm. The average roughness of the deposited film was measured to be 1.8 nm. The height distribution function of the grain size on the deposited surface was determined, revealing a mean grain height of 11 nm. The deposited film exhibited high transparency in the ultraviolet–visible (UV–Vis) spectroscopic region. The refractive index of the film was measured to be 2.20 at 632 nm. The optical bandgap and real part of the dielectric constant were found to be 1.5 eV and 4.84, respectively.

Keywords

TVA Cu2O thin film optical properties microstructural properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research activity was supported by ESOGU Scientific Research Committee Grant No. 201619053.

References

  1. 1.
    A.A. Al-Ghamdi, M. Khedr, M.S. Ansari, P. Hasan, M.S. Abdel-wahab, and A. Farghali, Physica E 81, 83 (2016).CrossRefGoogle Scholar
  2. 2.
    J.S.K. Arockiasamy and J. Irudayaraj, Ceram. Int. 42, 6198 (2016).CrossRefGoogle Scholar
  3. 3.
    S.-L. Cheng and M.-F. Chen, Nanoscale Res. Lett. 7, 119 (2012).CrossRefGoogle Scholar
  4. 4.
    M. Dahrul and H. Alatas, Procedia Environ. Sci. 33, 661 (2016).CrossRefGoogle Scholar
  5. 5.
    L. Debbichi, M. Marco de Lucas, J. Pierson, and P. Kruger, J. Phys. Chem. C 116, 10232 (2012).CrossRefGoogle Scholar
  6. 6.
    A.S. Ethiraj and D.J. Kang, Nanoscale Res. Lett. 7, 70 (2012).CrossRefGoogle Scholar
  7. 7.
    D. Jundale, P. Joshi, S. Sen, and V. Patil, J. Mater. Sci. Mater. Electron. 23, 1492 (2012).CrossRefGoogle Scholar
  8. 8.
    S. Karthick Kumar, S. Murugesan, S. Suresh, and S. Paul Raj, J. Sol. Energy 94, 299 (2013).CrossRefGoogle Scholar
  9. 9.
    H.R. Kim, A. Razzaq, C.A. Grimes, and S.-I. In, J. CO2 Util. 20, 91 (2017).CrossRefGoogle Scholar
  10. 10.
    F. Koffyberg and F. Benko, J. Appl. Phys. 53, 1173 (1982).CrossRefGoogle Scholar
  11. 11.
    Ş. Korkmaz, B. Geçici, S.D. Korkmaz, R. Mohammadigharehbagh, S. Pat, S. Özen, V. Şenay, and H.H. Yudar, Vacuum 131, 142 (2016).CrossRefGoogle Scholar
  12. 12.
    K. Mageshwari and R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 337 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Othonos and M. Zervos, Nanoscale Res. Lett. 6, 622 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Ogwu, T. Darma, and E. Bouquerel, J. Achiev. Mater. Manuf. Eng. 24, 172 (2007).Google Scholar
  15. 15.
    J. Pierson, A. Thobor-Keck, and A. Billard, Appl. Surf. Sci. 210, 359 (2003).CrossRefGoogle Scholar
  16. 16.
    C. Surdu-Bob, R. Vladoiu, M. Badulescu, and G. Musa, Diamond Relat. Mater. 17, 1625 (2008).CrossRefGoogle Scholar
  17. 17.
    C. Surdu-Bob, I. Mustata, and C. Iacob, J. Optoelectron. Adv. Mater. 9, 2932 (2007).Google Scholar
  18. 18.
    H. Ehrich, J. Schuhmann, G. Musa, A. Popescu, and I. Mustata, Thin Solid Films 333, 95 (1998).CrossRefGoogle Scholar
  19. 19.
    M. Özkan, N. Ekem, M. Balbag, and S. Pat, Proc. IME J. Mater. Des. Appl. 226, 103 (2012).Google Scholar
  20. 20.
    S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, Scanning 38, 14 (2015).CrossRefGoogle Scholar
  21. 21.
    S.-M. Park, A. Razzaq, Y.H. Park, S. Sorcar, Y. Park, C.A. Grimes, and S.-I. In, ACS Omega 1, 868 (2016).CrossRefGoogle Scholar
  22. 22.
    A. El Sayed, S. El-Gamal, W. Morsi, and G. Mohammed, J. Mater. Sci. 50, 4717 (2015).CrossRefGoogle Scholar
  23. 23.
    K.I. Mohammed, A.S. Jasim, and S.N. Rashid, Int. J. Phys. 4, 59 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Nanoscience and NanotechnologyEskisehir Osmangazi UniversityEskişehirTurkey
  2. 2.Department of Physics, Art and Science FacultyEskisehir Osmangazi UniversityEskişehirTurkey
  3. 3.Department of Physics, Urmia BranchIslamic Azad UniversityUrmiaIran
  4. 4.Young Researchers and Elite Club, Urmia BranchIslamic Azad UniversityUrmiaIran

Personalised recommendations