Advertisement

Formation of ErAs Nanoparticles by Pulsed Laser Ablation of Pressed Powder Targets

  • Matthew R. Lewis
  • Bo E. Tew
  • Joshua M. O. ZideEmail author
Topical Collection: 60th Electronic Materials Conference 2018
  • 8 Downloads
Part of the following topical collections:
  1. 60th Electronic Materials Conference
  2. 60th Electronic Materials Conference

Abstract

We investigate the optimal growth conditions for ErAs nanoparticle powders by nanosecond pulsed laser ablation in a He environment from elemental pressed powder targets. Incongruent ablation of the target due to differences in vaporization enthalpies is observed, and compensation for these differences is explored through altering target composition. The preferential ablation of As from the Er-As pressed powder targets appears to diminish over time, resulting in the reduced impact of differing vaporization enthalpies. Additionally, the influence of collection distance is investigated as a means to control crystallite size and powder composition. Particle size is shown to increase with collection distance and appears to reach a plateau as the beaker diameter becomes much larger than the plume size.

Keywords

ErAs nanoparticles laser ablation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award #DE-SC0008166.

References

  1. 1.
    W. Lambrecht, A. Petukhov, and B. Hemmelman, Solid State Commun. 108, 361 (1998).CrossRefGoogle Scholar
  2. 2.
    X. Liu, A. Ramu, J.E. Bowers, C. Palmstrom, P.G. Burke, H. Lu, and A.C. Gossard, J. Cryst. Growth 316, 56 (2011).CrossRefGoogle Scholar
  3. 3.
    L.R. Vanderhoef, A.K. Azad, C.C. Bomberger, D.R. Chowdhury, D.B. Chase, A.J. Taylor, J.M. Zide, and M.F. Doty, Phys. Rev. B 89, 045418 (2014).CrossRefGoogle Scholar
  4. 4.
    D. Ko, Y. Kang, and C. Murray, Nano Lett. 11, 2841 (2011).CrossRefGoogle Scholar
  5. 5.
    P. Pohl, F. Renner, M. Eckardt, A. Schwanhauser, A. Friedrick, O. Yuksekdag, S. Malzer, G. Dohler, P. Kiessel, D. Driscoll, M. Hanson, and A. Gossard, Appl. Phys. Lett. 83, 4035 (2003).CrossRefGoogle Scholar
  6. 6.
    J. Zide, A. Kleiman-Shwarsctein, N. Strandwitz, J. Zimmerman, T. Steenblock-Smith, A. Gossard, A. Forman, A. Ivanovskaya, and G. Stucky, Appl. Phys. Lett. 88, 162103 (2006).CrossRefGoogle Scholar
  7. 7.
    H.P. Nair, A.M. Crook, and S.R. Bank, Appl. Phys. Lett. 96, 222104 (2010).CrossRefGoogle Scholar
  8. 8.
    Z. Taylor, E. Brown, J. Bjarnason, M. Hanson, and A. Gossard, Opt. Lett. 31, 1729 (2006).CrossRefGoogle Scholar
  9. 9.
    Y. Wang, C. Jabbour, and J. Zide, Proceedings of SPIE, vol 10383 (2017).Google Scholar
  10. 10.
    W. Kim, S.L. Singer, A. Majumdar, J.M. Zide, D. Klenov, A.C. Gossard, and S. Stemmer, Nano Lett. 8, 2097 (2008).CrossRefGoogle Scholar
  11. 11.
    C. Bomberger, M. Lewis, L. Vanderhoef, M. Doty, and J. Zide, J. Vac. Sci. Technol. B 35, 030801 (2017).CrossRefGoogle Scholar
  12. 12.
    R. Guérin, Ternary Alloys, Vol. 10 (Weinheim: VCH Verlagsgesellschaft, 1994), p. 168.Google Scholar
  13. 13.
    M. Wu and C. Chiu, J. Appl. Phys. 73, 468 (1993).CrossRefGoogle Scholar
  14. 14.
    F. Bantien, E. Bauser, and J. Weber, J. Appl. Phys. 61, 2803 (1987).CrossRefGoogle Scholar
  15. 15.
    M. Swihart, Curr. Opin. Colloid Interface Sci. 8, 127 (2003).CrossRefGoogle Scholar
  16. 16.
    C. Granqvist and R. Buhrman, J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
  17. 17.
    F. Hulliger, Handbook on the Physics and Chemistry of Rare Earths, Vol. 4, (Amsterdam: North-Holland Publishing Company, 1979), p. 153Google Scholar
  18. 18.
    M. Lewis, K. Bichoupan, S.I. Shah, and J.M. Zide, J. Electron. Mater. 45, 6247 (2016).CrossRefGoogle Scholar
  19. 19.
    N. Dobelin and R. Kleenberg, J. Appl. Cryst. 48, 1573 (2015).CrossRefGoogle Scholar
  20. 20.
    D. Baurle, Laser Processing and Chemistry (New York: Springer, 2011).CrossRefGoogle Scholar
  21. 21.
    R. Mar and R. Beford, J. Less Common Met. 71, 317 (1980).CrossRefGoogle Scholar
  22. 22.
    A. Lisak and K. Fitzne, J. Phase Equilib. 71, 151 (1994).CrossRefGoogle Scholar
  23. 23.
    V. Singh, C. Cassidy, P. Grammatikopoulos, F. Djurabekova, K. Nordlund, and M. Sowwan, J. Phys. Chem. 118, 13869 (2014).Google Scholar
  24. 24.
    S. Pratonep, S. Carroll, C. Xirouchaki, M. Streun, and R. Palmer, Rev. Sci. Instrum. 76, 045103 (2005).CrossRefGoogle Scholar
  25. 25.
    J. Taylor, L. Calvert, J. Despault, E. Gabe, and J. Murray, J. Less Common Met. 37, 217 (1974).CrossRefGoogle Scholar
  26. 26.
    L. Clinger, G. Pernot, T. Buehl, P. Burke, A. Gossard, C. Palmstrom, A. Shakouri, and J. Zide, J. Appl. Phys. 111, 094312 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Matthew R. Lewis
    • 1
  • Bo E. Tew
    • 1
  • Joshua M. O. Zide
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations