Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1704–1713 | Cite as

Modeling and Evaluation of Stacking Fault Expansion Velocity in Body Diodes of 3.3 kV SiC MOSFET

  • Kumiko KonishiEmail author
  • Ryusei Fujita
  • Akio Shima
Article
  • 65 Downloads

Abstract

We evaluated the stacking fault (SF) expansion velocity by electrical characteristics and estimated the screening test condition, which is a stress test with current to eliminate 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs) whose forward voltage would be degraded during bipolar operation. First, double-diffused MOSFETs were fabricated, and forward current stress tests were applied to the body diodes in SiC MOSFETs. Their electrical characteristics were measured before and after forward voltage degradation at several junction temperatures. Second, to clarify the SF expansion sequence from a basal plane dislocation in the SiC epitaxial layer, continuous irradiation by an Hg lamp and photoluminescence (PL) observation were executed. Then, we present a model to explain the characteristics of the forward voltage degradation by a combination of the results of electrical measurement and PL observation. The characteristics calculated by using the presented model were in good agreement with the measured ones. Finally, forward current stress tests were applied to the body diodes in SiC MOSFETs with various conditions, and the SF expansion velocity was evaluated by calculation. These results indicate that the SF expansion velocity increases with forward current density and junction temperature. The estimated activation energy for the SF expansion velocity in the <1–100> direction is estimated to be 0.24 eV at a forward current density of 120 A/cm2.

Keywords

SiC MOSFET basal plane dislocation (BPD) stacking fault (SF) forward voltage degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Okumura, Jpn. J. Appl. Phys. 45, 7565 (2006).CrossRefGoogle Scholar
  2. 2.
    T. Kimoto, Jpn. J. Appl. Phys. 54, 040103 (2015).CrossRefGoogle Scholar
  3. 3.
    T. Funaki, M. Matsushita, M. Sasagawa, T. Kimoto, and T. Hikihara, Jpn. J. Appl. Phys. 54, 040103 (2015).CrossRefGoogle Scholar
  4. 4.
    T. Ishigaki, H. Kageyama, A. Shima, D. Hisamoto, K. Tomiyama, Y. Sasaki, and S. Ibori, in PCIM Europe conference Proceedings, pp. 199–123 (2015).Google Scholar
  5. 5.
    M. Skowronski and S. Ha, J. Appl. Phys. 99, 011101 (2006).CrossRefGoogle Scholar
  6. 6.
    A. Galeckas, J. Linnros, and P. Pirouz, Appl. Phys. Lett. 81, 883 (2002).CrossRefGoogle Scholar
  7. 7.
    J.D. Caldwell, R.E. Stahlbush, E.A. Imhoff, K.D. Hobart, M.J. Tadjer, Q. Zhang, and A. Agarwal, J. Appl. Phys. 106, 044504 (2009).CrossRefGoogle Scholar
  8. 8.
    A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa, and T. Kimoto, J. Appl. Phys. 119, 095711 (2016).CrossRefGoogle Scholar
  9. 9.
    T. Ohno and N. Kobayashi, J. Appl. Phys. 89, 933 (2001).CrossRefGoogle Scholar
  10. 10.
    T. Ohno and N. Kobayashi, J. Appl. Phys. 91, 4136 (2002).CrossRefGoogle Scholar
  11. 11.
    O.Å. Persson, L. Hultman, M.S. Janson, A. Hallén, and R. Yakimova, J. Appl. Phys. 93, 9395 (2003).CrossRefGoogle Scholar
  12. 12.
    J. Wong-Leung, M.K. Linnarsson, B.G. Svensson, and D.J.H. Cockayne, Phys. Rev. B 71, 16520 (2005).CrossRefGoogle Scholar
  13. 13.
    M. Nagano, H. Tsuchida, T. Suzuki, T. Hatakeyama, J. Senzaki, and K. Fukuda, J. Appl. Phys. 108, 013511 (2010).CrossRefGoogle Scholar
  14. 14.
    K. Konishi, R. Fujita, Y. Mori, and A. Shima, Semicond. Sci. Technol. 33, 125014 (2018).Google Scholar
  15. 15.
    T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, and K. Arai, J. Cryst. Growth 260, 209 (2004).CrossRefGoogle Scholar
  16. 16.
    T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, and K. Arai, J. Cryst. Growth 271, 1 (2004).CrossRefGoogle Scholar
  17. 17.
    R.E. Stahlbush, B.L. VanMil, R.L. Myers-Ward, K.-K. Lew, D.K. Gaskill, and C.R. Eddy Jr, Appl. Phys. Lett. 94, 041916 (2009).CrossRefGoogle Scholar
  18. 18.
    S. Chung, V. Wheeler, R. Myers-Ward, C.R. Eddy Jr, D. Kurt Gaskill, P. Wu, Y. Picard, and M. Skowronski, J. Appl. Phys. 109, 094906 (2011).CrossRefGoogle Scholar
  19. 19.
    K. Konishi, S. Yamamoto, S. Nakata, Y. Nakamura, Y. Nakanishi, T. Tanaka, Y. Mitani, N. Tomita, Y. Toyoda, and S. Yamakawa, J. Appl. Phys. 114, 014504 (2013).CrossRefGoogle Scholar
  20. 20.
    K. Konishi, S. Yamamoto, S. Nakata, Y. Toyoda, and S. Yamakawa, Mater. Sci. Forum 778–780, 342–345 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Yamamoto, Y. Nakao, N. Tomita, S. Nakata, and S. Yamakawa, Mater. Sci. Forum 778–780, 951–954 (2014).CrossRefGoogle Scholar
  22. 22.
    K. Konishi, R. Fujita, A. Shima, and Y. Shimamoto, Mater. Sci. Forum 897, 214–217 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Shima, H. Shimizu, Y. Mori, M. Sagawa, K. Konishi, R. Fujita, T. Ishigaki, N. Tega, K. Kobayashi, S. Sato, and Y. Shimamoto, Mater. Sci. Forum 897, 493–496 (2017).CrossRefGoogle Scholar
  24. 24.
    Y. Sugawara, Y. Miyanagi, K. Nakayama, K. Asano, S. Ogata, S. Okada, T. Izumi, and A. Tanaka, in 19th ISPSD Conference Proceedings, pp. 273–276 (2007).Google Scholar
  25. 25.
    J.D. Caldwell, R.E. Stahlbush, M.G. Ancona, O.J. Glembocki, and K.D. Hobar, J. Appl. Phys. 108, 044503 (2010).CrossRefGoogle Scholar
  26. 26.
    A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Philos. Mag. 97, 2736–2752 (2017).CrossRefGoogle Scholar
  27. 27.
    D. Hull and D.J. Bacon, Introduction to Dislocations, Chap. 10, 5th ed. (Oxford: Butterworth-Heinemann, 2011).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Research & Development Group, Hitachi, Ltd.TokyoJapan

Personalised recommendations