Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1540–1544 | Cite as

Enhanced Ultraviolet Emission from Hydrothermally Grown ZnO Nano-Grass on Si Substrate

  • Changzeng YanEmail author
  • Chinnambedu Murugesan Raghavan
  • Chao Ji
  • Rong SunEmail author
  • Ching-Ping Wong
Article
  • 33 Downloads

Abstract

Highly crystalline one-dimensional zinc oxide (ZnO) nano-grass was grown on silicon (Si) substrate by a modified hydrothermal method. A predominantly c-oriented ZnO nano-grass with an average diameter of 40–60 nm and length of 1.5–2.0 μm was obtained. From the photoluminescence (PL) measurement, we observed a defect-free, intense ultraviolet emission of as-grown ZnO nano-grass, confirming the absence of singly ionized oxygen vacancies. The absence of green deep-level emission in the PL spectrum further implies a high crystallinity of as-grown ZnO nano-grass. The high-quality ZnO nano-grass has potential applications in single nanowire-based light-emitting diodes, solar cells, themoresistive sensing, photocatalysis, ultraviolet photodetectors, optical switches, waveguides and nano-lasers.

Keywords

ZnO nanowires ultraviolet emission hydrothermal method photoluminescence annealing process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P.D. Yang, Nano Lett. 5, 1231 (2005).CrossRefGoogle Scholar
  2. 2.
    K.R. Yoon, K.H. Shin, J.W. Park, S.H. Cho, C.H. Kim, J.W. Jung, J.Y. Cheong, H.R. Byon, H.M. Lee, and I.D. Kim, ACS Nano 12, 128 (2018).CrossRefGoogle Scholar
  3. 3.
    H.E. Unalan, P. Hiralal, N. Rupesinghe, S. Dalal, W.I. Milne, and G.A. Amaratunga, Nanotechnology 19, 255608 (2008).CrossRefGoogle Scholar
  4. 4.
    W. Mtangi, F.D. Auret, M. Diale, W.E. Meyer, A. Chawanda, H.D. Meyer, P.J.J. Rensburg, and J.M. Nel, J. Appl. Phys. 111, 084503 (2012).CrossRefGoogle Scholar
  5. 5.
    G. Ou, D.K. Li, W. Pan, Q.H. Zhang, B. Xu, L. Gu, C.W. Nan, and H. Wu, Adv. Mater. 27, 2589 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Das, S. Das, A. Roychowdhury, D. Das, and S. Sutradhar, J. Alloy Compd. 708, 231 (2017).CrossRefGoogle Scholar
  7. 7.
    R.M. Hewlett and M.A. McLachlan, Adv. Mater. 28, 3893 (2016).CrossRefGoogle Scholar
  8. 8.
    L.L. Yang, Q.X. Zhao, M. Willander, X.J. Liu, M. Fahlman, and J.H. Yang, Cryst. Growth Des. 10, 1904 (2010).CrossRefGoogle Scholar
  9. 9.
    H. Kurt, E. Alpaslan, B. Yildiz, A. Taralp, and C.W. Ow-Yang, J. Colloid Interf. Sci. 488, 348 (2017).CrossRefGoogle Scholar
  10. 10.
    C.M. Raghavan, C. Yan, S.P. Patole, J.B. Yoo, and D.J. Kang, Proceeding of Vacuum Nanoelectronics Conference (IVNC), 2012 25th International.  https://doi.org/10.1109/ivnc.2012.6316971.
  11. 11.
    B.C. Qiu, M.Y. Xing, and J.L. Zhang, Chem. Soc. Rev. 47, 2165 (2018).CrossRefGoogle Scholar
  12. 12.
    S. Zhu, X. Chen, F. Zuo, M. Jiang, Z. Zhou, and D. Hui, J. Solid State Chem. 197, 69 (2013).CrossRefGoogle Scholar
  13. 13.
    J.B. Joo, B.Y. Chow, M. Prakash, E.S. Boyden, and J.M. Jacobson, Nat. Mat. 10, 596 (2011).CrossRefGoogle Scholar
  14. 14.
    Z.T. Han, S.S. Li, J.H. Chu, and Y. Chen, J. Semicond. 34, 063002 (2013).CrossRefGoogle Scholar
  15. 15.
    A. Umar, B. Karunagaran, E.K. Suh, and Y.B. Hahn, Nanotechnology 17, 4072 (2006).CrossRefGoogle Scholar
  16. 16.
    A. Umar, S.H. Kim, J.H. Kim, A. Al-Hajryb, and Y.B. Hahn, J. Alloys Compd. 463, 516 (2008).CrossRefGoogle Scholar
  17. 17.
    M. Miyake, M. Suginohara, N. Narahara, T. Hirato, and P.V. Braun, Chem. Mater. 29, 9734 (2017).CrossRefGoogle Scholar
  18. 18.
    L.M. Wang, X.Q. Gu, Y.L. Zhao, and Y.H. Qiang, J. Mater. Sci. Mater. Electron. 29, 4058 (2018).CrossRefGoogle Scholar
  19. 19.
    T.W. Kim and T. Kawazoe, Appl. Phys. Lett. 84, 3358 (2004).CrossRefGoogle Scholar
  20. 20.
    Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, and S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Department of PhysicsChangwon National UniversityChangwonRepublic of Korea
  3. 3.Department of Electronics EngineeringThe Chinese University of Hong KongShatinChina
  4. 4.School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations