Journal of Electronic Materials

, Volume 48, Issue 3, pp 1562–1567 | Cite as

Electrical Evaluation of DNA Stretched and Immobilized Between Triangular-Shaped Electrodes

  • Takahiro HimuroEmail author
  • Shota Tsukamoto
  • Yoji Saito


As a step toward applications for biosensors, we characterized the electrical properties of λDNA molecules via their current–voltage characteristics and complex impedance plots. λDNA molecules were introduced to a microfluidic device using a microchannel (depth, 50 μm; width, 500 μm; length, 10 mm) and electrostatically stretched and immobilized in the 14-μm gap between two triangular-shaped microlithographed aluminum electrodes by applying an alternating voltage of 1 MHz and 20 Vp–p. The aligned λDNA showed nonlinear current–voltage characteristics. From the complex impedance plots of the λDNA molecules, an equivalent circuit was obtained as a series connection of two resistance–capacitance parallel circuits. Finally, we demonstrated that the electrical characteristics of the λDNA between the electrodes varied with the number of immobilized λDNA molecules.


DNA impedance equivalent circuit electrostatic orientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by a Grant-in-Aid for Young Scientists (Grant No.: JP18K13769) and a Grant-in-Aid for Challenging Exploratory Research (Grant No.: JP16K14281) from JSPS. The authors gratefully thank Dr. Masanori Eguchi of the National Institute of Technology, Kure College for his help with electron-beam lithography exposure and I–V measurements. We are grateful to Prof. Seiichi Suzuki of Seikei University for his help with fluorescence observation.


  1. 1.
    N.C. Seeman, Trends Biotechnol. 17, 437 (1999).CrossRefGoogle Scholar
  2. 2.
    N.C. Seeman, Nature 421, 427 (2003).CrossRefGoogle Scholar
  3. 3.
    P.W.K. Rothemund, Nature 440, 297 (2006).CrossRefGoogle Scholar
  4. 4.
    C.J. Murphy, M.R. Arkin, Y. Jenkins, N.D. Ghatlia, S.H. Bossmann, N.J. Turro, and J.K. Barton, Science 262, 1025 (1993).CrossRefGoogle Scholar
  5. 5.
    S. Tuukkanen, A. Kuzyk, J.J. Toppari, V.P. Hytonen, T. Ihalainen, and P. Torma, Appl. Phys. Lett. 87, 183102 (2005).CrossRefGoogle Scholar
  6. 6.
    P. Romano, A. Polcari, B. Verruso, V. Colantuoni, W. Saldarriaga, and E. Baca, J. Appl. Phys. 102, 103720 (2007).CrossRefGoogle Scholar
  7. 7.
    T. Tsukamoto, Y. Ishikawa, Y. Sengoku, and N. Kurita, Chem. Phys. Lett. 474, 362 (2009).CrossRefGoogle Scholar
  8. 8.
    T.G. Drummond, M.G. Hill, and J.K. Barton, Nat. Biotechnol. 21, 1192 (2003).CrossRefGoogle Scholar
  9. 9.
    S. Sato, K. Fujita, M. Kanazawa, K. Mukumoto, K. Ohtsuka, and S. Takenaka, Anal. Chim. Acta 645, 30 (2009).CrossRefGoogle Scholar
  10. 10.
    C. Yamahata, D. Collard, T. Takekawa, M. Kumemura, G. Hashiguchi, and H. Fujita, Biophys. J. 94, 63 (2008).CrossRefGoogle Scholar
  11. 11.
    E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature 391, 775 (1998).CrossRefGoogle Scholar
  12. 12.
    K. Ijiro, Y. Matsuo, and Y. Hashimoto, Mol. Cryst. Liq. Cryst. 445, 207 (2006).CrossRefGoogle Scholar
  13. 13.
    T. Himuro, R. Araki, S. Sato, S. Takenaka, and T. Yasuda, IEE J. Trans. Sens. Micromach. 136, 425 (2016).CrossRefGoogle Scholar
  14. 14.
    T. Himuro, S. Sato, S. Takenaka, and T. Yasuda, Electroanalysis 28, 1448 (2016).CrossRefGoogle Scholar
  15. 15.
    T. Heim, D. Deresmes, and D. Vuillaume, J. Appl. Phys. 96, 2927 (2004).CrossRefGoogle Scholar
  16. 16.
    M. Kumemura, D. Collard, C. Yamahata, N. Sakaki, G. Hashiguchi, and H. Fujita, ChemPhysChem 8, 1875 (2007).CrossRefGoogle Scholar
  17. 17.
    M. Ueda, H. Iwasaki, O. Kurosawa, and M. Washizu, Jpn. J. Appl. Phys. 38, 2118 (1999).CrossRefGoogle Scholar
  18. 18.
    J.T.S. Irvine, D.C. Sinclair, and A.R. West, Adv. Mater. 2, 132 (1990).CrossRefGoogle Scholar
  19. 19.
    I.I. Suni, Trends Anal. Chem. 27, 604 (2008).CrossRefGoogle Scholar
  20. 20.
    P.L. Bonora, F. Deflorian, and L. Fedrizzi, Electrochim. Acta 41, 1073 (1995).CrossRefGoogle Scholar
  21. 21.
    F. Huet, J. Power Sour. 70, 59 (1998).CrossRefGoogle Scholar
  22. 22.
    C.Y. Yuh and J.R. Selman, AIChE J. 34, 1949 (1998).CrossRefGoogle Scholar
  23. 23.
    C.D. Feng, Y.D. Ming, P.J. Hesketh, S.M. Gendel, and J.R. Stetter, Sens. Actuat. B Chem. 36, 1 (1996).CrossRefGoogle Scholar
  24. 24.
    C. Berggren, B. Bjarnason, and G. Johansson, Electroanalysis 13, 173 (2001).CrossRefGoogle Scholar
  25. 25.
    A.B. Kharitonov, L. Alfona, E. Katz, and I. Willner, J. Electroanal. Chem. 487, 133 (2000).CrossRefGoogle Scholar
  26. 26.
    L. Alfonta, E. Katz, and I. Willner, Anal. Chem. 72, 927 (2000).CrossRefGoogle Scholar
  27. 27.
    A. Bardea, F. Patolsky, A. Dagan, and I. Willner, Chem. Commun. 1, 21 (1999).CrossRefGoogle Scholar
  28. 28.
    F. Patolsky, A. Lichtenstein, and I. Willner, J. Am. Chem. Soc. 123, 5194 (2001).CrossRefGoogle Scholar
  29. 29.
    H. Cai, Y. Xu, P.G. He, and Y.Z. Fang, Electroanalysis 15, 1864 (2003).CrossRefGoogle Scholar
  30. 30.
    W. Yang, J.E. Butler, J.N. Russell, and R.J. Hamers, Langmuir 20, 6778 (2004).CrossRefGoogle Scholar
  31. 31.
    A. Sadkowski, J. Electroanal. Chem. 481, 222 (2000).CrossRefGoogle Scholar
  32. 32.
    A. Sadkowski, J. Electroanal. Chem. 481, 232 (2000).CrossRefGoogle Scholar
  33. 33.
    F. Berthier, J.-P. Diard, and R. Michel, J. Electroanal. Chem. 510, 1 (2001).CrossRefGoogle Scholar
  34. 34.
    K. Kishi, T. Yasuda, and H. Takeshita, Leg. Med. 3, 69 (2001).CrossRefGoogle Scholar
  35. 35.
    H. Takeshita, T. Nakajima, K. Mogi, Y. Kaneko, T. Yasuda, R. Iida, and K. Kishi, Clin. Chem. 50, 446 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Systems Design Engineering, Faculty of Science and TechnologySeikei UniversityMusashino-ShiJapan

Personalised recommendations