Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1506–1510 | Cite as

Effect of Temperature on Microwave-Absorption Property of Plasma-Sprayed Ti3SiC2/NASICON Coating

  • Dan ChenEmail author
  • Fa Luo
  • Wancheng Zhou
  • Dongmei Zhu
Article
  • 27 Downloads

Abstract

The high-temperature dielectric and microwave-absorption properties of Ti3SiC2/NASICON coating have been rarely reported. The coating was fabricated by atmospheric plasma spraying in this work for study of dielectric and microwave-absorption properties from 25°C to 500°C. Results showed that the complex permittivity increased with elevated temperature due to the dielectric relaxation, space charge polarization, thermal ion relaxation polarization and conduction loss. When the temperature ranged from 200°C to 500°C, the coating exhibited a good microwave-absorption property with a wide bandwidth (below −5 dB) with a thickness less than 2 mm, which indicated that Ti3SiC2/NASICON coating can be chosen as a potential candidate of high-temperature microwave-absorption material.

Keywords

Dielectrics microwave absorption Ti3SiC2/NASICON coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the Excellent Doctorate Cultivating Foundation of Northwestern Polytechnical University.

References

  1. 1.
    C. Singh, H. Kaur, S.B. Narang, P. Kaur, R. Kaur, and T. Dhiman, J. Alloys Compd. 683, 302 (2016).CrossRefGoogle Scholar
  2. 2.
    J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Jotania, and R. Joshi, J. Alloys Compd. 695, 792 (2017).CrossRefGoogle Scholar
  3. 3.
    C. Singh, S.B. Narang, and M.Y. Koledintseva, Microw. Opt. Technol. Lett. 54, 1661 (2012).CrossRefGoogle Scholar
  4. 4.
    H. Kaur, C. Singh, R. Kaur, T. Dhiman, and S.B. Narang, Eur. Phys. J. B 88, 274 (2015).CrossRefGoogle Scholar
  5. 5.
    C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou, L.T. Zhang, and L.F. Cheng, Carbon 116, 50 (2017).CrossRefGoogle Scholar
  6. 6.
    H. Gao, F. Luo, Q.L. Wen, Y. Hu, and Y.C. Qing, J. Mater. Sci. 53, 15465 (2018).CrossRefGoogle Scholar
  7. 7.
    Y. Hou, L.F. Cheng, Y.N. Zhang, Y. Yang, C.R. Deng, Z.H. Yang, Q.C. Peng, P. Wang, L.X. Zhang, and A.C.S. Appl, Mater. Int. 9, 7265 (2017).CrossRefGoogle Scholar
  8. 8.
    M. Li, X.W. Yin, G.P. Zheng, M. Chen, M.J. Tao, L.F. Cheng, and L.T. Zhang, J. Mater. Sci. 50, 1478 (2015).CrossRefGoogle Scholar
  9. 9.
    B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, and J. Yuan, Adv. Mater. 26, 3484 (2014).CrossRefGoogle Scholar
  10. 10.
    J.R. Ma, X.X. Wang, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, and M.S. Cao, Chem. Eng. J. 339, 487 (2018).CrossRefGoogle Scholar
  11. 11.
    W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, and M.S. Cao, J. Mater. Chem. C 3, 10017 (2015).CrossRefGoogle Scholar
  12. 12.
    J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang, J. Yuan, and A.C.S. Appl, Mater. Int. 8, 22615 (2016).CrossRefGoogle Scholar
  13. 13.
    J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, and M.S. Cao, J. Mater. Chem. C 3, 4670 (2015).CrossRefGoogle Scholar
  14. 14.
    Z.H. Yang, Z.W. Li, Y.H. Yang, Z.C. Xu, and A.C.S. Appl, Mater. Int. 6, 21911 (2014).CrossRefGoogle Scholar
  15. 15.
    H.J. Yang, M.S. Cao, Y. Li, H.L. Shi, Z.L. Hou, X.Y. Fang, H.B. Jin, W.Z. Wang, and J. Yuan, Adv. Opt. Mater. 2, 214 (2014).CrossRefGoogle Scholar
  16. 16.
    X.L. Shi, M.S. Cao, X.Y. Fang, J. Yuan, Y.Q. Kang, and W.L. Song, Appl. Phys. Lett. 93, 223112 (2008).CrossRefGoogle Scholar
  17. 17.
    J.B. Su, W.C. Zhou, Y. Liu, Y.C. Qing, F. Luo, and D.M. Zhu, Surf. Coat. Technol. 270, 39 (2015).CrossRefGoogle Scholar
  18. 18.
    Y. Liu, F. Luo, J.B. Su, W.C. Zhou, D.M. Zhu, and Z.M. Li, J. Alloys Compd. 619, 854 (2015).CrossRefGoogle Scholar
  19. 19.
    S.G. Li, Y.Q. Tan, J.X. Xue, T. Liu, X.S. Zhou, and H.B. Zhang, AIP Adv. 8, 015027 (2018).CrossRefGoogle Scholar
  20. 20.
    M. Guin and F. Tietz, J. Power Sour. 273, 1056 (2015).CrossRefGoogle Scholar
  21. 21.
    D. Chen, F. Luo, L. Gao, W.C. Zhou, and D.M. Zhu, J. Eur. Ceram. Soc. 38, 4440 (2018).CrossRefGoogle Scholar
  22. 22.
    D. Chen, F. Luo, W.C. Zhou, and D.M. Zhu, J. Mater. Sci. Mater. Electron. 29, 13534 (2018).CrossRefGoogle Scholar
  23. 23.
    Q.L. Wen, W.C. Zhou, Y.D. Wang, Y.C. Qing, F. Luo, D.M. Zhu, and Z.B. Huang, J. Mater. Sci. 52, 832 (2017).CrossRefGoogle Scholar
  24. 24.
    D. Chen, F. Luo, X.F. Lou, Y.C. Qing, W.C. Zhou, and D.M. Zhu, Ceram. Int. 43, 4324 (2017).CrossRefGoogle Scholar
  25. 25.
    J.B. Su, W.C. Zhou, Y. Liu, Y.C. Qing, F. Luo, and D.M. Zhu, J. Mater. Sci. Mater. Electron. 27, 2460 (2017).CrossRefGoogle Scholar
  26. 26.
    D. Chen, F. Luo, W.C. Zhou, and D.M. Zhu, J. Alloys Compd. 757, 348 (2018).CrossRefGoogle Scholar
  27. 27.
    M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fan, B. Wen, and J. Yuan, Small 14, 1800987 (2018).CrossRefGoogle Scholar
  28. 28.
    M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, and M.S. Cao, J. Mater. Chem. A 2, 10540 (2014).CrossRefGoogle Scholar
  29. 29.
    B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, and J. Yuan, Carbon 65, 124 (2013).CrossRefGoogle Scholar
  30. 30.
    Y. Li, X.Y. Fang, and M.S. Cao, Sci. Rep. 6, 24837 (2016).CrossRefGoogle Scholar
  31. 31.
    M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, D.Q. Zhang, W.Z. Wang, J. Yuan, and A.S.C. Appl, Mater. Int. 7, 19408 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations