Journal of Electronic Materials

, Volume 48, Issue 3, pp 1694–1703 | Cite as

Fraction of Rare-Earth (Sm/Nd)-Lanthanum Ferrite-Based Perovskite Ferroelectric and Magnetic Nanopowders

  • Raji RameshKumar
  • Tholkappiyan Ramachandran
  • Karthikeyan Natarajan
  • Munisamy Muralidharan
  • Fathalla Hamed
  • Vishista KurapatiEmail author


Multiferroic compound, especially LaFeO3-based perovskite nanopowders that exhibit robust simultaneous ferromagnetism and ferroelectricity, are widely investigated and applied in different applications. In this work, we report the synthesis and characterization pertaining to fraction of rare-earth (Sm/Nd)-substituted lanthanum ferrite based perovskite nanopowders via solid-state technique. The multiferroic phenomenon is the fundamental approach to combine both the ferromagnetic and ferroelectric properties in a single system. Reduction in crystallite size, as well as some lattice distortion effects, are included to show the possibilities of tuning the lattice structure, electrical, optical as well as the magnetic properties which are closely connected to the ferroelectric behavior and magnetism. At room temperature, the ferroelectric behavior of La0.9(Sm/Nd)0.1FeO3 exhibiting a P-E hysteresis loop became more and more pronounced, indicating the electrical leakage is greatly reduced. The canted antiferromagnetic hysteresis loop shows that the rare-earth (Sm/Nd) ion can significantly affect the magnetic parameters of the materials.


Lanthanum ferrite solid-state reaction UV–Vis spectroscopy ferroelectric x-ray diffraction optical and magnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Mikami and S. Nakamura, J. Alloys Compd. 408–412, 687 (2006).CrossRefGoogle Scholar
  3. 3.
    N. Dilawar, S. Mehrotra, D. Varandani, B.V. Kumaraswamy, S.K. Haldar, and A.K. Bandyopadhyay, Mater. Charact. 59, 462 (2008).CrossRefGoogle Scholar
  4. 4.
    A. Venugopalan, M. Appasamy, S. Saravanan, K. Kothandaraman, and J. Kothandaraman, J. Rare Earths 27, 1013 (2009).CrossRefGoogle Scholar
  5. 5.
    V. Anbarasu, A. Manigandan, T. Karthik, and K. Sivakumar, J. Mater. Sci. Mater. Electron. 23, 1201 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. Wang, X. Yang, L. Lu, and X. Wang, Thermochim. Acta 443, 225 (2006).CrossRefGoogle Scholar
  7. 7.
    S.M. Khetre, A.U. Chopade, C.J. Khilare, S.R. Kulal, H.V. Jadhav, and P.N. Jagadale, J. Shivaji Univ. (Sci. & Technology) 3, 41 (2015).Google Scholar
  8. 8.
    D. Le Minh, V. Nu, M. Hoa, N.N. Dinh, and N.T. Thuy, J. Math. Phys. 29, 42 (2013).Google Scholar
  9. 9.
    A.P. Blessington Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I. Panneer Muthuselvam, and F.C. Chou, J. Alloys Compd. 646, 924 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Phokha, S. Hunpratup, S. Pinitsoontorn, B. Putasaeng, S. Rujirawat, and S. Maensiri, Mater. Res. Bull. 67, 118 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Thirumalairajan, K. Girija, V.R. Mastelaro, and N. Ponpandian, J. Mater. Sci. Mater. Electron. 26, 8652 (2015).CrossRefGoogle Scholar
  12. 12.
    M.A. Ahmed and S.I. Dek, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 128, 30 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, and P.K. Chakrabarti, Mater. Lett. 64, 415 (2010).CrossRefGoogle Scholar
  14. 14.
    E. Swatsitang, A. Karaphun, S. Phokha, S. Hunpratub, and T. Putjuso, J. Sol-Gel. Sci. Technol. 81, 483 (2017).CrossRefGoogle Scholar
  15. 15.
    N. Karthikeyan, R.R. Kumar, G. Jaiganesh, and K. Sivakumar, Phys. B Condens. Matter 529, 1 (2018).CrossRefGoogle Scholar
  16. 16.
    Y. Janbutrach, S. Hunpratub, and E. Swatsitang, Nanoscale Res. Lett. 9, 498 (2014).CrossRefGoogle Scholar
  17. 17.
    S. Hunpratub, A. Karaphun, S. Phokha, and E. Swatsitang, Appl. Surf. Sci. 380, 52 (2016).CrossRefGoogle Scholar
  18. 18.
    B.V. Prasad, B.V. Rao, K. Narsaiah, G.N. Rao, J.W. Chen, and D. Suresh Babu, IOP Conf. Ser. Mater. Sci. Eng. 73, 012129 (2015).CrossRefGoogle Scholar
  19. 19.
    B.P. Barbero, J.A. Gamboa, and L.E. Cadús, Appl. Catal. B Environ. 65, 21 (2006).CrossRefGoogle Scholar
  20. 20.
    P. Shikha, T.S. Kang, and B.S. Randhawa, J. Alloys Compd. 625, 336 (2015).CrossRefGoogle Scholar
  21. 21.
    A.L. Patterson, Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
  22. 22.
    A.C.F.M. Costa, E. Tortella, M.R. Morelli, and R.H.G.A. Kiminami, J. Magn. Magn. Mater. 256, 174 (2003).CrossRefGoogle Scholar
  23. 23.
    T. Ramachandran and F. Hamed, Mater. Res. Bull. 95, 104 (2017).CrossRefGoogle Scholar
  24. 24.
    Y. Wang, J. Zhu, L. Zhang, X. Yang, L. Lu, and X. Wang, Mater. Lett. 60, 1767 (2006).CrossRefGoogle Scholar
  25. 25.
    M. Popa, J. Frantti, and M. Kakihana, Solid State Ion. 154–155, 437 (2002).CrossRefGoogle Scholar
  26. 26.
    L. Martín-Carrón and A. De Andrés, Eur. Phys. J. B 2230, 11 (2001).CrossRefGoogle Scholar
  27. 27.
    I.S. Smirnova, Phys. B 262, 247 (1999).CrossRefGoogle Scholar
  28. 28.
    S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, A. Balamurugan, and N. Ponpandian, Chem. Eng. J. 209, 420 (2012).CrossRefGoogle Scholar
  29. 29.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).CrossRefGoogle Scholar
  30. 30.
    J.H. Lee, Y.K. Jeong, J.H. Park, M.A. Oak, H.M. Jang, J.Y. Son, and J.F. Scott, Phys. Rev. Lett. 107, 1 (2011).Google Scholar
  31. 31.
    M. Shang, C. Zhang, T. Zhang, L. Yuan, L. Ge, H. Yuan, and S. Feng, Appl. Phys. Lett. 102, 1 (2013).Google Scholar
  32. 32.
    Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, and T.R. Shrout, J. Appl. Phys. 103, 7 (2008).Google Scholar
  33. 33.
    N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kitô, Nature 436, 1136 (2005).CrossRefGoogle Scholar
  34. 34.
    N. Aparnadevi, K. Saravana Kumar, M. Manikandan, D. Paul Joseph, and C. Venkateswaran, J. Appl. Phys. 120, 034101 (2016).Google Scholar
  35. 35.
    A. Paul Blessington Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, P.M. Mohammed Gazzali, and G. Chandrasekaran, Appl. Phys. A 123, 13 (2017).CrossRefGoogle Scholar
  36. 36.
    J.B. Goodenough, Phys. Rev. 100, 564 (1955).CrossRefGoogle Scholar
  37. 37.
    J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959).CrossRefGoogle Scholar
  38. 38.
    E. Cao, Y. Qin, T. Cui, L. Sun, W. Hao, and Y. Zhang, Ceram. Int. 43, 17247 (2017).CrossRefGoogle Scholar
  39. 39.
    K. Devi Chandrasekhar, S. Mallesh, J. Krishna Murthy, A.K. Das, and A. Venimadhav, Phys. B Condens. Matter 448, 304 (2014).CrossRefGoogle Scholar
  40. 40.
    K. Mukhopadhyay, A.S. Mahapatra, and P.K. Chakrabarti, J. Magn. Magn. Mater. 329, 133 (2013).CrossRefGoogle Scholar
  41. 41.
    K. Mukhopadhyay, A.S. Mahapatra, and P.K. Chakrabarti, Mater. Lett. 159, 9 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Raji RameshKumar
    • 1
  • Tholkappiyan Ramachandran
    • 2
  • Karthikeyan Natarajan
    • 1
  • Munisamy Muralidharan
    • 3
  • Fathalla Hamed
    • 2
  • Vishista Kurapati
    • 1
    Email author
  1. 1.Department of Physics, College of EngineeringAnna UniversityGuindy, ChennaiIndia
  2. 2.Department of Physics, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  3. 3.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations