Advertisement

Composition Dependence of the Band Gap Energy of the Sb-Rich GaBixSb1−x Alloy (0 ≤ x ≤ 0.26) Described by the Modified Band Anticrossing Model

  • Chuan-Zhen Zhao
  • Xiang-Tan Li
  • Xiao-Dong Sun
  • Sha-Sha Wang
  • Jun Wang
Article
  • 5 Downloads

Abstract

The impurity–host interaction and the impurity–impurity interaction exist in the Sb-rich GaBixSb1−x alloy. It is found that the effect of impurity–impurity on the band gap energy can be neglected. The impurity–host interaction not only depends on the Bi content, but also on the content of the host material. In order to describe the band gap energy of the Sb-rich GaBixSb1−x, the virtual crystal approximation for conduction band minimum (CBM) and the modified valence band anticrossing model for valence band maximum (VBM) are applied. It is also found that when the Bi content is about 0.259, the band gap energy of GaBixSb1−x becomes 0 eV. In addition, it is found that the Г CBM depending on Bi content is much stronger than that of the Г VBM. It is relative to two factors. One is that the conduction band offset between GaSb and GaBi is much larger than the valence band offset. The other is that the energy difference between the Bi level and the Г VBM of GaSb is very large. The large energy difference usually leads to a weak coupling interaction between the Bi level and the Г VBM of GaSb, thus resulting in weak composition dependence of the Г VBM in the Sb-rich range.

Keywords

GaBixSb1−x Bi level band gap energy Sb-rich 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by National Nature Science Foundation of China (61874077, 61504094). Tianjin Research Program of Application Foundation and Advanced Technology (Nos. 15JCYBJC51900, 17JCQNJC02000).

References

  1. 1.
    K. Uesugi, N. Marooka, and I. Suemune, Appl. Phys. Lett. 74, 1254 (1999).CrossRefGoogle Scholar
  2. 2.
    C.Z. Zhao, Q. Fu, T. Wei, S.S. Wang, and K.Q. Lu, J. Electron. Mater. 46, 1546 (2017).CrossRefGoogle Scholar
  3. 3.
    P.J. Klar, H. Grüning, W. Heimbrodt, J. Koch, F. Höhnsdorf, W. Stolz, P.M.A. Vicente, and J. Camassel, Appl. Phys. Lett. 76, 3439 (2000).CrossRefGoogle Scholar
  4. 4.
    C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, and K.Q. Lu, J. Mater. Sci. Mater. Electron. 27, 550 (2016).CrossRefGoogle Scholar
  5. 5.
    C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, and K.Q. Lu, Mater. Sci. Poland 34, 881 (2016).CrossRefGoogle Scholar
  6. 6.
    X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, and Y. Zhang, Appl. Phys. Lett. 95, 041903 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003).Google Scholar
  8. 8.
    M. Usman, C.A. Broderick, A. Lindsay, and E.P. O’Reilly, Phys. Rev. B 84, 245202 (2011).CrossRefGoogle Scholar
  9. 9.
    S.K. Das, T.D. Das, S. Dhar, M. de la Mare, and A. Krier, Infrared Phys. Technol. 55, 156 (2012).CrossRefGoogle Scholar
  10. 10.
    S.K. Das, T.D. Das, and S. Dhar, Semicond. Sci. Technol. 29, 015003 (2014).CrossRefGoogle Scholar
  11. 11.
    J. Kopaczek, R. Kudrawiec, W. Linhart, M. Rajpalke, T. Jones, M. Ashwin, and T. Veal, Appl. Phys. Exp. 7, 111202 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Kopaczek, R. Kudrawiec, W.M. Linhart, M.K. Rajpalke, K.M. Yu, T.S. Jones, M.J. Ashwin, J. Misiewicz, and T.D. Veal, J. Appl. Phys. 103, 261907 (2013).Google Scholar
  13. 13.
    M.P. Polak, P. Scharoch, and R. Kudrawiec, Semicond. Sci. Technol. 30, 094001 (2015).CrossRefGoogle Scholar
  14. 14.
    M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, D.O. Scanlon, J. Buckeridge, T.S. Jones, M.J. Ashwin, and T.D. Veal, Appl. Phys. Lett. 103, 142106 (2013).CrossRefGoogle Scholar
  15. 15.
    M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T.S. Jones, M.J. Ashwin, and T.D. Veal, J. Appl. Phys. 116, 043511 (2014).CrossRefGoogle Scholar
  16. 16.
    O. Delorme, L. Cerutti, E. Tournié, and J.-B. Rodriguez, J. Cryst. Growth 477, 144 (2017).CrossRefGoogle Scholar
  17. 17.
    M.K. Rajpalke, W.M. Linhart, K.M. Yu, T.S. Jones, M.J. Ashwin, and T.D. Veal, J. Cryst. Growth 425, 241 (2015).CrossRefGoogle Scholar
  18. 18.
    L. Yue, Y. Zhang, F. Zhang, L. Wang, Y. Zhuzhong, J. Liu, and S. Wang, in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS), 2016. IEEE, vol. 1 (2016)Google Scholar
  19. 19.
    M.P. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M.J. Winiarski, W.M. Linhart, M.K. Rajpalke, K.M. Yu, T.S. Jones, M.J. Ashwin, and T.D. Veal, J. Phys. D Appl. Phys. 47, 355107 (2014).Google Scholar
  20. 20.
    S.H. Wei and A. Zunger, Phys. Rev. Lett. 76, 664 (1996).CrossRefGoogle Scholar
  21. 21.
    Y.H. Li, X.G. Gong, and S.H. Wei, Phys. Rev. B 71, 245206 (2006).CrossRefGoogle Scholar
  22. 22.
    S.H. Wei and A. Zunger, Phys. Rev. B. 60, 5404 (1996).CrossRefGoogle Scholar
  23. 23.
    M. Masnadi-Shirazi, R.B. Lewis, V. Bahrami-Yekta, T. Tiedje, M. Chicoine, and P. Servati, Appl. Phys. Lett. 116, 223506 (2014).Google Scholar
  24. 24.
    M.M. Habchi, A.B. Nasr, A. Rebey, and B.E. Jani, Infrared Phys. Technol. 61, 88 (2013).CrossRefGoogle Scholar
  25. 25.
    K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna, Phys. Rev. B 75, 045203 (2007).CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, A. Mascarenhas, and L.W. Wang, Phys. Rev. B 71, 155201 (2005).CrossRefGoogle Scholar
  27. 27.
    C.Z. Zhao, H.Y. Ren, T. Wei, S.S. Wang, and K.Q. Lu, J. Electron. Mater. 47, 4539 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information EngineeringTianjin Polytechnics UniversityTianjinChina

Personalised recommendations