Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1545–1552 | Cite as

Comparative Study of EPR and Optical Properties of CdS, TiO2 and CdS-TiO2 Nanocomposite

  • Ram KripalEmail author
  • Garima Vaish
  • Upendra Mani Tripathi
Article
  • 70 Downloads

Abstract

An economical chemical route is used to synthesize a titanium oxide-based nanocomposite (NC) which has properties that may help to develop photocatalysts with improved efficiency in the visible region of solar light. Investigation of opto-electronic properties has been carried out for a CdS, TiO2 and CdS-TiO2 NC at room temperature. Structural properties of the CdS and TiO2 nanoparticles and the CdS-TiO2 NC were investigated using x-ray diffraction and transmission electron microscopy techniques. How incorporation of CdS nanoparticles affects the structural properties of pure TiO2 was also studied. Change in optical behavior was compared using UV–visible and photoluminescence spectra, and the presence of residual functional groups were indicated by Fourier-transform infrared analysis of the samples. The measurement of band levels was carried out by cyclic voltammetry (CV) and the band gap estimated from UV–visible was compared to that obtained by CV. The electron paramagnetic resonance technique was used for the investigation of the electronic properties of the samples.

Keywords

Nanocomposite opto-electronic properties band edge emission photocatalyst EPR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are gratified to the Head, SAIF, I. I. T. Mumbai, Powai, Mumbai, for providing the facility of the EPR spectrometer. One of the authors, Garima Vaish, is grateful to the Head, Department of Physics, University of Allahabad, Allahabad, for providing departmental facilities.

References

  1. 1.
    N. Zhang, S. Liu, X. Fu, and Y.J. Xu, J. Mater. Chem. 22, 5042 (2012).CrossRefGoogle Scholar
  2. 2.
    P.H.C. Camargo, K.G. Satyanarayana, and F. Wypych, Mater. Res. 12, 11 (2009).CrossRefGoogle Scholar
  3. 3.
    L. Cao, X. Wu, Q. Wang, and J. Wang, J. Photochem. Photobiol. B 178, 440 (2018).CrossRefGoogle Scholar
  4. 4.
    M. Salarian, W.Z. Xu, Z. Wang, T.-K. Sham, and P.A. Charpentier, ACS Appl. Mater. Interfaces 6, 16918 (2014).CrossRefGoogle Scholar
  5. 5.
    E. Bet-moushoul, Y. Mansourpanah, Kh Farhadi, and M. Tabatabaei, Chem. Eng. J. 283, 29 (2016).CrossRefGoogle Scholar
  6. 6.
    K. Zhang and H.J. Choi, Materials 7, 3399 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Truppi, F. Petronella, T. Placido, M. Striccoli, A. Agostiano, M.L. Curri, and R. Comparelli, Catalysts 7, 100 (2017).CrossRefGoogle Scholar
  8. 8.
    D. Zhao and C.-F. Yang, Renew. Sustain. Energy Rev. 54, 1048 (2016).CrossRefGoogle Scholar
  9. 9.
    G.-S. Li, D.-Q. Zhang, and J.C. Yu, Environ. Sci. Technol. 43, 709 (2009).CrossRefGoogle Scholar
  10. 10.
    S. Bera, S.B. Rawal, H.J. Kim, and W.I. Lee, ACS Appl. Mater. Interfaces 6, 9654 (2014).CrossRefGoogle Scholar
  11. 11.
    H. He, A. Chen, H. Lv, and C. Li, Mod. Phys. Lett. B 27, 1341015 (2013).CrossRefGoogle Scholar
  12. 12.
    S. Chaguetmi, F. Mammeri, M. Pasut, S. Nowak, H. Lecoq, P. Decorse, C. Costentin, S. Achour, and S. Ammar, J. Nanopart. Res. 15, 2140 (2013).CrossRefGoogle Scholar
  13. 13.
    T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, and S.L. Suib, Molecules 21, 900 (2016).CrossRefGoogle Scholar
  14. 14.
    W. Aashir, Z. Qianpeng, T.M. Mahdi, L.S. Fung, G. Leilei, H. Jin, M. Xiaoliang, and F. Zhiyong, Sci. Bull. 61, 86 (2016).CrossRefGoogle Scholar
  15. 15.
    J.C. Védrine, Catalysts 7, 341 (2017).CrossRefGoogle Scholar
  16. 16.
    W.-W. So, K.-J. Kim, and S.-J. Moon, Int. J. Hydrog. Energy 29, 229 (2004).CrossRefGoogle Scholar
  17. 17.
    C.-R. Ke, J.-S. Guo, Y.-H. Su, and J.-M. Ting, Nanotechnology 27, 435405 (2016).CrossRefGoogle Scholar
  18. 18.
    P.D. Tran, L.H. Wong, J. Barber, and J.S. Loo, Environ. Sci. 5, 5902 (2012).Google Scholar
  19. 19.
    L.-L. Tan, W.-J. Ong, S.-P. Chai, and A.R. Mohamed, Nanoscale Res. Lett. 8, 465 (2013).CrossRefGoogle Scholar
  20. 20.
    Z. Chen, S. Liu, M.-Q. Yang, and Y.-J. Xu, ACS Appl. Mater. Interfaces 5, 4309 (2013).CrossRefGoogle Scholar
  21. 21.
    K.-H. Lin, C.-Y. Chuang, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, I.-P. Liu, S.-C. Chou, and Y.-L. Lee, J. Phys. Chem. C 116, 1550 (2012).CrossRefGoogle Scholar
  22. 22.
    G.-S. Li, D.-Q. Zhang, and J.C. Yu, Environ. Sci. Technol. 43, 7079 (2009).CrossRefGoogle Scholar
  23. 23.
    D. Wu, F. Wang, Y. Tana, and C. Li, RSC Adv. 6, 73522 (2016).CrossRefGoogle Scholar
  24. 24.
    T. Senasu and S. Nanan, J. Mater. Sci. Mater. Electron. 28, 17421 (2017).CrossRefGoogle Scholar
  25. 25.
    H. Zhang, G. Chen, and D.W. Bahnemann, J. Mater. Chem. 19, 5089 (2009).CrossRefGoogle Scholar
  26. 26.
    L.J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, Appl. Phys. Lett. 91, 023116 (2007).CrossRefGoogle Scholar
  27. 27.
    A.-M. Ilyas, M.A. Gondal, Z.H. Yamani, and U. Baig, Int. J. Energy Res. 41, 1422 (2017).CrossRefGoogle Scholar
  28. 28.
    M.M. Khan, S.A. Ansari, D. Pradhan, M. Omaish Ansari, D.H. Han, J. Leea, and M.H. Cho, J. Mater. Chem. A 2, 637 (2014).CrossRefGoogle Scholar
  29. 29.
    S.A. Ansari and M.H. Cho, Sci. Rep. 6, 25405 (2016).CrossRefGoogle Scholar
  30. 30.
    Y. Bessekhouad, D. Robert, and J. Weber, J. Photochem. Photobiol. A 163, 569 (2004).CrossRefGoogle Scholar
  31. 31.
    W. Zhu, X. Liu, H. Liu, D. Tong, J. Yang, and J. Peng, J. Am. Chem. Soc. 132, 12619 (2010).CrossRefGoogle Scholar
  32. 32.
    S. Liu, N. Zhang, Z.-R. Tang, and Y.-J. Xu, ACS Appl. Mater. Interfaces 4, 6378 (2012).CrossRefGoogle Scholar
  33. 33.
    N. Zhang, S. Liu, X. Fu, and Y.-J. Xu, J. Mater. Chem. 22, 5042 (2012).CrossRefGoogle Scholar
  34. 34.
    Z. Chen and Y.-J. Xu, ACS Appl. Mater. Interfaces 5, 13353 (2013).CrossRefGoogle Scholar
  35. 35.
    W. Donga, F. Pana, L. Xua, M. Zhengc, C.H. Sowc, K. Wub, G.Q. Xua, and W. Chena, Appl. Surf. Sci. 349, 279 (2015).CrossRefGoogle Scholar
  36. 36.
    G. Xu, S. Ji, C. Miao, G. Liu, and C. Ye, J. Mater. Chem. 22, 4890 (2012).CrossRefGoogle Scholar
  37. 37.
    S.K. Haram, B.M. Quinn, and A.J. Bard, J. Am. Chem. Soc. 123, 8860 (2001).CrossRefGoogle Scholar
  38. 38.
    P. Prasannalakshmi, N. Shanmugam, and A.S. Kumar, J. Appl. Electrochem. 47, 889 (2017).Google Scholar
  39. 39.
    L.-B. Xiong, J.-L. Li, B. Yang, and Y. Yu, J. Nanomater. 13, 831524 (2012).Google Scholar
  40. 40.
    T.A. Konovalova, L.D. Kispert, and V.V. Konovalov, J. Phys. Chem. B 103, 4672 (1999).CrossRefGoogle Scholar
  41. 41.
    L. Wu, J.C. Yu, and X. Fu, J. Mol. Catal. A Chem. 244, 25 (2006).CrossRefGoogle Scholar
  42. 42.
    S. Yu, J. Hu, and J. Li, Int. J. Photoenergy (2014). https:// doi.org/10.1155/2014/854217.Google Scholar
  43. 43.
    S. Dutta, R. Sahoo, C. Ray, S. Sarkar, J. Jana, Y. Negishib, and T. Pa, Dalton Trans. 44, 193 (2015).CrossRefGoogle Scholar
  44. 44.
    T.K. Jana, A. Pal, and K. Chatterjee, J. Alloys Compd. 583, 510 (2014).CrossRefGoogle Scholar
  45. 45.
    A.K. Gupta and R. Kripal, Spectrochim. Acta Part A 96, 626 (2012).CrossRefGoogle Scholar
  46. 46.
    R. Kripal and U.M. Tripathi, Adv. Sci. Eng. Med. 9, 130 (2017).CrossRefGoogle Scholar
  47. 47.
    B.S. Rao, B.R. Kumar, V.R. Reddy, and T.S. Rao, Chalcogenide Lett. 8, 177 (2011).Google Scholar
  48. 48.
    E. Kucur, J. Riegler, G.A. Urban, and T. Nann, J. Chem. Phys. 119, 2333 (2003).CrossRefGoogle Scholar
  49. 49.
    V. Bala, S.K. Tripathi, and R. Kumar, J. Nanoeng. Nanomanuf. 4, 2157 (2014).Google Scholar
  50. 50.
    K. Das and S.K. De, J. Phys. Chem. C 113, 3494 (2009).CrossRefGoogle Scholar
  51. 51.
    P. Praveen, G. Viruthagiri, S. Mugundan, and N. Shanmugam, Spectrochim. Acta Part A 120, 548 (2014).CrossRefGoogle Scholar
  52. 52.
    J. Yang, J.-H. Zeng, S.-H. Yu, L. Yang, G.-E. Zhou, and Y.-T. Qian, Chem. Mater. 12, 3259 (2000).CrossRefGoogle Scholar
  53. 53.
    T.F. Yen, Electron Spin Resonance of Metal Complexes (New York: Plenum press, 1969).CrossRefGoogle Scholar
  54. 54.
    A. Lund, M. Shiotani, and S. Shimada, Principles and Applications of ESR Spectroscopy (Berlin: Springer, 2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ram Kripal
    • 1
    Email author
  • Garima Vaish
    • 1
  • Upendra Mani Tripathi
    • 1
  1. 1.Department of PhysicsUniversity of AllahabadAllahabadIndia

Personalised recommendations