Journal of Electronic Materials

, Volume 48, Issue 3, pp 1643–1651 | Cite as

Optical and Spectroscopic Investigation of Sm3+-Doped Calcium Borotellurite Glasses

  • M. N. Queiroz
  • N. F. Dantas
  • D. R. N. Brito
  • M. J. Barboza
  • A. Steimacher
  • F. PedrochiEmail author


Calcium borotellurite glasses, doped with 0.25 mol.% of Sm2O3, were prepared to investigate the influence of TeO2 content in their properties. The samples were prepared by a melt-quenching method, with TeO2 varying from 9 mol.% to 51 mol.% and characterized by volumetric density, optical absorption, refractive index, luminescence and radiative lifetime. The results are discussed as a function of TeO2 content. The increase of TeO2 concentration increases the volumetric density and refractive index. The optical absorption spectra present peaks characteristic of Sm3+ ions. The most intense absorption peak was observed at 402 nm (6H5/2 6P3/2 level). The increase of TeO2 content shifts the band edge to a longer wavelength, resulting in a reduction of optical energy band gap and an increase of Urbach energy. The luminescence spectra show four typical emissions of Sm3+ at 564 nm, 598 nm, 646 nm and 707 nm, corresponding to 4G5/2 6HJ (J = 5/2, 7/2, 9/2, and 11/2) electronic transitions, respectively. The luminescence spectra present a reduction in their intensity with TeO2 increase, which occurs mainly due to the decrease of the number of ions per cubic centimeter. The luminescence intensity shows a decrease for all the samples with the temperature increase. The experimental lifetime of 4G5/2 6H7/2 transition decreases with the increase of TeO2 content due to an increase of NBOs in the glass structure.


Calcium borotellurite glasses TeO2 content samarium optical properties spectroscopic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was partly financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. We are grateful to the Brazilian agencies CNPq, CAPES, FINEP and FAPEMA for the financial support.


  1. 1.
    W. Stambouli, H. Elhouichet, B. Gelloz, and M. Férid, J. Lumin. 138, 201 (2013).CrossRefGoogle Scholar
  2. 2.
    C.B. de Araujo, D. Silvério da Silva, T.A. Alves de Assumpção, L.R.P. Kassab, and D. Mariano da Silva, ScientificWorldJournal. 2013, 385193 (2013).Google Scholar
  3. 3.
    H. Fares, I. Jlassi, H. Elhouichet, and M. Férid, J. Non. Cryst. Solids 396–397, 1 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Anand Pandarinath, G. Upender, K. Narasimha Rao, and D. Suresh Babu, J. Non. Cryst. Solids 433, 60 (2016).CrossRefGoogle Scholar
  5. 5.
    M.R. Dousti, R.J. Amjad, R.S. Hosseinian, M. Salehi, and M.R. Sahar, J. Lumin. 159, 100 (2015).CrossRefGoogle Scholar
  6. 6.
    M.A. Khaled, H. Elzahed, S.A. Fayek, and M.M. El-Ocker, Mater. Chem. Phys. 37, 329 (1994).CrossRefGoogle Scholar
  7. 7.
    H. Bürger, W. Vogel, V. Kozhukharov, and M. Marinov, J. Mater. Sci. 19, 403 (1984).CrossRefGoogle Scholar
  8. 8.
    N. Kaur and A. Khanna, J. Non. Cryst. Solids 404, 116 (2014).CrossRefGoogle Scholar
  9. 9.
    B.C. Jamalaiah, M.V. Vijaya Kumar, and K. Rama Gopal, Opt. Mater. (Amst). 33, 1643 (2011).CrossRefGoogle Scholar
  10. 10.
    B. Sailaja, R. Joyce Stella, G. Thirumala Rao, B. Jaya Raja, V. Pushpa Manjari, and R.V.S.S.N. Ravikumar, J. Mol. Struct. 1096, 129 (2015).CrossRefGoogle Scholar
  11. 11.
    Y.B. Saddeek and L.A. El Latif, Phys. B Condens. Matter 348, 475 (2004).CrossRefGoogle Scholar
  12. 12.
    K. Maheshvaran, K. Linganna, and K. Marimuthu, J. Lumin. 131, 2746 (2011).CrossRefGoogle Scholar
  13. 13.
    K. Maheshvaran and K. Marimuthu, J. Lumin. 132, 2259 (2012).CrossRefGoogle Scholar
  14. 14.
    J.F. Gomes, A.M.O. Lima, M. Sandrini, A.N. Medina, A. Steimacher, F. Pedrochi, and M.J. Barboza, Opt. Mater. (Amst). 66, 211 (2017).CrossRefGoogle Scholar
  15. 15.
    A.M.O. Lima, J.F. Gomes, F.L. Hegeto, A.N. Medina, A. Steimacher, and M.J. Barboza, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 193, 212 (2018).CrossRefGoogle Scholar
  16. 16.
    E.C. Paz, T.A. Lodi, B.R.A. Gomes, G.H.A. Melo, F. Pedrochi, and A. Steimacher, Solid State Sci. 55, 106 (2016).CrossRefGoogle Scholar
  17. 17.
    N. Deopa and A.S. Rao, Opt. Mater. (Amst). 72, e105 (2017).CrossRefGoogle Scholar
  18. 18.
    T. Subrahmanyam, K.R. Gopal, R.P. Suvarna, and B.C. Jamalaiah, Phys. B Phys. Condens. Matter 533, 76 (2018).CrossRefGoogle Scholar
  19. 19.
    N. Deopa, A.S. Rao, A. Choudhary, S. Saini, A. Navhal, M. Jayasimhadri, D. Haranath, and G. Vijaya Prakash, Mater. Res. Bull. 100, 206 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Selvi, K. Marimuthu, and G. Muralidharan, J. Lumin. 159, 207 (2015).CrossRefGoogle Scholar
  21. 21.
    C.K. Jayasankar and P. Babu, J. Alloys Compd. 307, 82 (2000).CrossRefGoogle Scholar
  22. 22.
    I.I. Kindrat, B.V. Padlyak, and A. Drzewiecki, J. Lumin. 166, 264 (2015).CrossRefGoogle Scholar
  23. 23.
    M.A.K. Elfayoumi, M. Farouk, M.G. Brik, and M.M. Elokr, J. Alloys Compd. 492, 712 (2010).CrossRefGoogle Scholar
  24. 24.
    D. Umamaheswari, B.C. Jamalaiah, T. Sasikala, I.G. Kim, and L.R. Moorthy, J. Non. Cryst. Solids 358, 782 (2012).CrossRefGoogle Scholar
  25. 25.
    N. Kaur, A. Khanna, M. Gónzález-Barriuso, F. González, and B. Chen, J. Non. Cryst. Solids 429, 153 (2015).CrossRefGoogle Scholar
  26. 26.
    K. Linganna, C. Basavapoornima, and C.K. Jayasankar, Opt. Commun. 344, 100 (2015).CrossRefGoogle Scholar
  27. 27.
    S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. Chary, and M. Rao, Int. J. Eng. Sci. Technol. 4, 25 (2013).Google Scholar
  28. 28.
    E.C. Paz, T.A. Lodi, B.R.A. Gomes, G.H.A. Melo, F. Pedrochi, and A. Steimacher, Solid State Sci. 55, 106 (2016).CrossRefGoogle Scholar
  29. 29.
    I.S. Yahia, K.A. Aly, Y.B. Saddeek, W. Dobrowolski, M. Arciszewska, and L. Kilanski, J. Non. Cryst. Solids 375, 69 (2013).CrossRefGoogle Scholar
  30. 30.
    V. Dimitrov and T. Komatsu, J. Solid State Chem. 178, 831 (2005).CrossRefGoogle Scholar
  31. 31.
    L. Prod’homme, Phys. Chem. Glas. 1, 119 (1960).Google Scholar
  32. 32.
    V. Dimitrov and T. Komatsu, J. Non. Cryst. Solids 249, 160 (1999).CrossRefGoogle Scholar
  33. 33.
    I.S. Yahia, K.A. Aly, Y.B. Saddeek, W. Dobrowolski, M. Arciszewska, and L. Kilanski, J. Non. Cryst. Solids 375, 69 (2013).CrossRefGoogle Scholar
  34. 34.
    M.K. Halimah, M.F. Faznny, M.N. Azlan, and H.A.A. Sidek, Results Phys. 7, 581 (2017).CrossRefGoogle Scholar
  35. 35.
    T. Komatsu, N. Ito, T. Honma, and V. Dimitrov, Solid State Sci. 14, 1419 (2012).CrossRefGoogle Scholar
  36. 36.
    W. Ryba-Romanowski, A. Strzęp, R. Lisiecki, and M. Berkowski, Opt. Spectrosc. 116, 724 (2014).CrossRefGoogle Scholar
  37. 37.
    S. Shanmuga Sundari, K. Marimuthu, M. Sivraman, and S.S. Babu, J. Lumin. 130, 1313 (2010).CrossRefGoogle Scholar
  38. 38.
    V. Venkatramu, P. Babu, C.K. Jayasankar, T. Tröster, W. Sievers, and G. Wortmann, Opt. Mater. (Amst). 29, 1429 (2007).CrossRefGoogle Scholar
  39. 39.
    R. Praveena, V. Venkatramu, P. Babu, and C.K. Jayasankar, Phys. B Condens. Matter 403, 3527 (2008).CrossRefGoogle Scholar
  40. 40.
    T. Sasikala, L.R. Moorthy, and A.M. Babu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 445 (2013).CrossRefGoogle Scholar
  41. 41.
    M. Sobczyk, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 965 (2015).CrossRefGoogle Scholar
  42. 42.
    A.I. Sabry and M.M. El-Samanoudy, J. Mater. Sci. 30, 3930 (1995).CrossRefGoogle Scholar
  43. 43.
    R.A.H. El-mallawany, Tellurite Glass Handbook - Physical Properties and Data (Boca Raton: CRC Press, 2002).Google Scholar
  44. 44.
    J.A. Duffy, Phys. Chem. Glas. 42, 151 (2001).Google Scholar
  45. 45.
    K. Nanda, R.S. Kundu, S. Sharma, D. Mohan, R. Punia, and N. Kishore, Solid State Sci. 45, 15 (2015).CrossRefGoogle Scholar
  46. 46.
    J. Tauc and A. Menth, J. Non. Cryst. Solids 8–10, 569 (1972).CrossRefGoogle Scholar
  47. 47.
    K. Maheshvaran, P.K. Veeran, and K. Marimuthu, Solid State Sci. 17, 54 (2013).CrossRefGoogle Scholar
  48. 48.
    P. Suthanthirakumar, P. Karthikeyan, P.K. Manimozhi, and K. Marimuthu, J. Non. Cryst. Solids 410, 26 (2015).CrossRefGoogle Scholar
  49. 49.
    K. Maheshvaran and K. Marimuthu, J. Lumin. 132, 2259 (2012).CrossRefGoogle Scholar
  50. 50.
    Z.A. Said-Mahraz, M.R. Sahar, and S.K. Ghoshal, J. Mol. Struct. 1072, 238 (2014).CrossRefGoogle Scholar
  51. 51.
    Y. Zhang, Z. Zhu, W. Zhang, and Y. Qiao, J. Alloys Compd. 566, 164 (2013).CrossRefGoogle Scholar
  52. 52.
    F. Nawaz, M.R. Sahar, S.K. Ghoshal, A. Awang, and I. Ahmed, Phys. B Condens. Matter 433, 89 (2014).CrossRefGoogle Scholar
  53. 53.
    R. Vijayakumar and K. Marimuthu, J. Mol. Struct. 1092, 166 (2015).CrossRefGoogle Scholar
  54. 54.
    G.H.A. Melo, J.D.M. Dias, T.A. Lodi, M.J. Barboza, F. Pedrochi, and A. Steimacher, Opt. Mater. (Amst). 54, 98 (2016).CrossRefGoogle Scholar
  55. 55.
    Y. Hasegawa, S. Ichi Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, Thin Solid Films 516, 2704 (2008).CrossRefGoogle Scholar
  56. 56.
    K. Selvaraju and K. Marimuthu, J. Lumin. 132, 1171 (2012).CrossRefGoogle Scholar
  57. 57.
    E.F. Schubert, Light-Emitting Diodes, 1st ed. (Cambridge: Cambridge University Press, 2006).CrossRefGoogle Scholar
  58. 58.
    T.A. Lodi, M. Sandrini, A.N. Medina, M.J. Barboza, F. Pedrochi, and A. Steimacher, Opt. Mater. (Amst.) 76, 231 (2018).CrossRefGoogle Scholar
  59. 59.
    R.S. Yadav, R.K. Dutta, M. Kumar, and A.C. Pandey, J. Lumin. 129, 1078 (2009).CrossRefGoogle Scholar
  60. 60.
    X. Min, M. Fang, Z. Huang, Y. Liu, C. Tang, H. Zhu, and X. Wu, Opt. Mater. (Amst). 37, 110 (2014).CrossRefGoogle Scholar
  61. 61.
    K. Annapurna, R.N. Dwivedi, and S. Buddhudu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 3896, 2 (1999).Google Scholar
  62. 62.
    D.R.N. Brito, M.N. Queiroz, M.J. Barboza, A. Steimacher, and F. Pedrochi, Opt. Mater. (Amst). 64, 114 (2017).CrossRefGoogle Scholar
  63. 63.
    B.M. Walsh, Advances in Spectroscopy for Lasers and Sensing (Netherlands: Springer, 2006), pp. 403–433.CrossRefGoogle Scholar
  64. 64.
    B.R. Judd, Phys. Rev. 127, 750 (1962).Google Scholar
  65. 65.
    G.S. Ofelt, J. Chem. Phys. 37, 511 (1962).CrossRefGoogle Scholar
  66. 66.
    T. Srihari and C.K. Jayasankar, Opt. Mater. (Amst). 66, 35 (2017).CrossRefGoogle Scholar
  67. 67.
    N. Chanthima, Y. Tariwong, M. Djamal, and J. Kaewkhao, Mater. Today Proc. 5, 15034 (2018).CrossRefGoogle Scholar
  68. 68.
    D.D. Ramteke, A. Balakrishna, V. Kumar, and H.C. Swart, Opt. Mater. (Amst). 64, 171 (2017).CrossRefGoogle Scholar
  69. 69.
    L. Boehm, R. Reisfeld, and N. Spector, J. Solid State Chem. 28, 75 (1979).CrossRefGoogle Scholar
  70. 70.
    N.S. Hussain, V. Aruna, and S. Buddhudu, Mater. Res. Bull. 35, 703 (2000).CrossRefGoogle Scholar
  71. 71.
    T. Sasikala, L. Rama Moorthy, and A. Mohan Babu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 445 (2013).CrossRefGoogle Scholar
  72. 72.
    A. Agarwal, I. Pal, S. Sanghi, and M.P. Aggarwal, Opt. Mater. (Amst). 32, 339 (2009).CrossRefGoogle Scholar
  73. 73.
    P. Karthikeyan, S. Arunkumar, C. Basavapoornima, and K. Marimuthu, J. Lumin. 178, 43 (2016).CrossRefGoogle Scholar
  74. 74.
    M. Gökçe and D. Koçyiğit, Opt. Mater. (Amst). 83, 233 (2018).CrossRefGoogle Scholar
  75. 75.
    G. Lakshminarayana, R. Yang, and M. Mao, J. Qiu 31, 1506 (2009).Google Scholar
  76. 76.
    R. Sharma and A.S. Rao, Opt. Mater. (Amst). 84, 375 (2018).CrossRefGoogle Scholar
  77. 77.
    K. Swapna, S. Mahamuda, A.S. Rao, T. Sasikala, and L.R. Moorthy, J. Lumin. 146, 288 (2014).CrossRefGoogle Scholar
  78. 78.
    B.C. Jamalaiah, J. Suresh Kumar, A. Mohan Babu, T. Suhasini, and L. Rama Moorthy, J. Lumin. 129, 363 (2009).CrossRefGoogle Scholar
  79. 79.
    G. Venkataiah, C.K. Jayasankar, K. Venkata Krishnaiah, P. Dharmaiah, and N. Vijaya, Opt. Mater. (Amst). 40, 26 (2015).CrossRefGoogle Scholar
  80. 80.
    R. Ferreira de Morais, E.O. Serqueira, and N.O. Dantas, Opt. Mater. Express 3, 853 (2013).CrossRefGoogle Scholar
  81. 81.
    S. Kuhn, A. Herrmann, J. Hein, M.C. Kaluza, and C. Rüssel, J. Mater. Sci. 48, 8014 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.CCSST, GPCM, Universidade Federal do MaranhãoImperatrizBrazil

Personalised recommendations