Journal of Electronic Materials

, Volume 48, Issue 3, pp 1604–1611 | Cite as

Chemical Sensing Performance of Flower-Like ZnO/PSi Nanostructures via Electrochemical Impedance Spectroscopy Technique

  • Ramazanali DalvandEmail author
  • Shahrom Mahmud
  • Azman Seeni


ZnO nanostructures were synthesized on porous Si (PSi) structures using a method developed by this study known as electric field-assisted aqueous solution technique. The detailed characterization of this nanostructure was performed using atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction, room-temperature photoluminescence and Raman spectroscopy. Electrochemical impedance spectroscopy (EIS) technique was used to detect two classifications of chemical solvents, namely polar and non-polar solvents. Nyquist plots in EIS were utilized to detect chemical solvents (ethanol, acetone, toluene and benzene) exposed to ZnO/PSi nanostructure arrays. The results showed that the grown flower-like ZnO nanostructure arrays served as good chemical sensors with high sensitivity and low power consumption. Meanwhile, the ZnO/PSi nanoflowers exposed to ethanol showed the highest sensitivity (94.6% response) compared to other chemical solutions with the least response exhibited by benzene (68.4% response). It was postulated that the interaction between the solution and oxygen species of ZnO/PSi nanostructure surface induced a resistance change resulting in the release of free electrons that migrated to the conduction band of ZnO/PSi nanoflower structures and reduced the number of surface-adsorbed oxygen species. Subsequently, the changes observed in the Nyquist semicircle diameter and Warburg impedance led to the chemical sensing response.


Chemical sensors electric field-assisted aqueous solution technique electrochemical impedance spectroscopy Nyquist plot ZnO/PSi nanoflower 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge financial support from an ERGS grant (203/PFIZIK/6730100) from the Malaysian Government.


  1. 1.
    A. Wei, C. Xu, X. Sun, W. Huang, and G.-Q. Lo, J. Disp. Technol. 4, 9 (2008).CrossRefGoogle Scholar
  2. 2.
    T. Das, B. Das, K. Parashar, R. Kumar, H. Choudhary, A. Anupama, B. Sahoo, P. Sahoo, and S. Parashar, J. Mater. Sci. Mater. Electron. 28, 13587 (2017).CrossRefGoogle Scholar
  3. 3.
    G. Hanrahan, D.G. Patil, and J. Wang, J. Environ. Monit. 6, 657 (2004).CrossRefGoogle Scholar
  4. 4.
    E. Bakker and M. Telting-Diaz, Anal. Chem. 74, 2781 (2002).CrossRefGoogle Scholar
  5. 5.
    A. Wei, L. Pan, and W. Huang, Mater. Sci. Eng. B 176, 1409 (2011).CrossRefGoogle Scholar
  6. 6.
    C. Fernández-Sánchez, C.J. McNeil, and K. Rawson, TrAC Trends Anal. Chem. 24, 37 (2005).CrossRefGoogle Scholar
  7. 7.
    B. Pejcic and R. De Marco, Electrochim. Acta 51, 6217 (2006).CrossRefGoogle Scholar
  8. 8.
    I.I. Suni, TrAC Trends Anal. Chem. 27, 604 (2008).CrossRefGoogle Scholar
  9. 9.
    H. Huang, L. Zhang, W. Zhang, Y. Gan, and H. Shao, J. Power Sources 184, 663 (2008).CrossRefGoogle Scholar
  10. 10.
    B.K. Das, T. Das, K. Parashar, S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A. Anupama, and B. Sahoo, Mater. Chem. Phys. 221, 419 (2019).CrossRefGoogle Scholar
  11. 11.
    A. Lasia, Mod. Asp. Electrochem. 32, 143 (2002).Google Scholar
  12. 12.
    B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem. 3, 207 (2010).CrossRefGoogle Scholar
  13. 13.
    N. Naderi and M. Hashim, Appl. Surf. Sci. 258, 6436 (2012).CrossRefGoogle Scholar
  14. 14.
    H. Abdulgafour, F. Yam, Z. Hassan, K. Al-Heuseen, and M. Jawad, J. Alloys Compd. 509, 5627 (2011).CrossRefGoogle Scholar
  15. 15.
    H. Cai, H. Shen, Y. Yin, L. Lu, J. Shen, and Z. Tang, J. Phys. Chem. Solids 70, 967 (2009).CrossRefGoogle Scholar
  16. 16.
    M. Balucani, P. Nenzi, E. Chubenko, A. Klyshko, and V. Bondarenko, J. Nanopart. Res. 13, 5985 (2011).CrossRefGoogle Scholar
  17. 17.
    Y. Zhao, D. Yang, D. Li, and M. Jiang, Appl. Surf. Sci. 252, 1065 (2005).CrossRefGoogle Scholar
  18. 18.
    C.-J. Chang, S.-T. Hung, C.-K. Lin, C.-Y. Chen, and E.-H. Kuo, Thin Solid Films 519, 1693 (2010).CrossRefGoogle Scholar
  19. 19.
    Q.-L. Ma, B.-G. Zhai, and Y.M. Huang, J. Sol–gel Sci. Technol. 64, 110 (2012).CrossRefGoogle Scholar
  20. 20.
    N.I. Rusli, M. Tanikawa, M.R. Mahmood, K. Yasui, and A.M. Hashim, Materials 5, 2817 (2012).CrossRefGoogle Scholar
  21. 21.
    J. Elias, R. Tena-Zaera, and C. Lévy-Clément, J. Electroanal. Chem. 621, 171 (2008).CrossRefGoogle Scholar
  22. 22.
    R. Dalvand, S. Mahmud, M. Alimanesh, and A.H. Vakili, Ceram. Int. 43, 1488 (2017).CrossRefGoogle Scholar
  23. 23.
    R. Dalvand, S. Mahmud, and J. Rouhi, Mater. Lett. 160, 444 (2015).CrossRefGoogle Scholar
  24. 24.
    H.-C. Hsu, C.-S. Cheng, C.-C. Chang, S. Yang, C.-S. Chang, and W.-F. Hsieh, Nanotechnology 16, 297 (2005).CrossRefGoogle Scholar
  25. 25.
    D.Y. Kim, J.Y. Kim, H. Chang, M.S. Kim, J.-Y. Leem, J. Ballato, and S.-O. Kim, Nanotechnology 23, 485606 (2012).CrossRefGoogle Scholar
  26. 26.
    J. Lee, W. Gao, Z. Li, M. Hodgson, J. Metson, H. Gong, and U. Pal, Appl. Phys. A 80, 1641 (2005).CrossRefGoogle Scholar
  27. 27.
    K.A. Salman, K. Omar, and Z. Hassan, Mater. Lett. 68, 51 (2012).CrossRefGoogle Scholar
  28. 28.
    C.-Y. Tsay, K.-S. Fan, S.-H. Chen, and C.-H. Tsai, J. Alloys Compd. 495, 126 (2010).CrossRefGoogle Scholar
  29. 29.
    C.-F. Yu, C.-W. Sung, S.-H. Chen, and S.-J. Sun, Appl. Surf. Sci. 256, 792 (2009).CrossRefGoogle Scholar
  30. 30.
    L. Cui, H.-Y. Zhang, G.-G. Wang, F.-X. Yang, X.-P. Kuang, R. Sun, and J.-C. Han, Appl. Surf. Sci. 258, 2479 (2012).CrossRefGoogle Scholar
  31. 31.
    O. Jayakumar, V. Sudarsan, C. Sudakar, R. Naik, R. Vatsa, and A. Tyagi, Scr. Mater. 62, 662 (2010).CrossRefGoogle Scholar
  32. 32.
    C. Tonon, C. Duvignacq, G. Teyssedre, and M. Dinguirard, J. Phys. D Appl. Phys. 34, 124 (2001).CrossRefGoogle Scholar
  33. 33.
    J. Petersen, C. Brimont, M. Gallart, O. Crégut, G. Schmerber, P. Gilliot, B. Hönerlage, C. Ulhaq-Bouillet, J. Rehspringer, and C. Leuvrey, J. Appl. Phys. 104, 113539 (2008).CrossRefGoogle Scholar
  34. 34.
    M. Malek, M. Mamat, Z. Khusaimi, M. Sahdan, M. Musa, A. Zainun, A. Suriani, N.M. Sin, S.A. Hamid, and M. Rusop, J. Alloys Compd. 582, 12 (2014).CrossRefGoogle Scholar
  35. 35.
    Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, Mater. Sci. Eng. B 97, 111 (2003).CrossRefGoogle Scholar
  36. 36.
    M. Archer, M. Christophersen, and P. Fauchet, Sens. Actuators B Chem. 106, 347 (2005).CrossRefGoogle Scholar
  37. 37.
    L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, Sens. Actuators B Chem. 162, 237 (2012).CrossRefGoogle Scholar
  38. 38.
    H.S. Al-Salman and M. Abdullah, Measurement 59, 248 (2015).CrossRefGoogle Scholar
  39. 39.
    I. Schechter, M. Ben-Chorin, and A. Kux, Anal. Chem. 67, 3727 (1995).CrossRefGoogle Scholar
  40. 40.
    S. Green and P. Kathirgamanathan, Mater. Lett. 52, 106 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ramazanali Dalvand
    • 1
    • 2
    Email author
  • Shahrom Mahmud
    • 1
  • Azman Seeni
    • 3
  1. 1.Institute of Nano-Optoelectronic Research and Technology, School of PhysicsUniversiti Sains MalaysiaPulau PinangMalaysia
  2. 2.Department of PhysicsLorestan UniversityKhoramabadIran
  3. 3.Cluster of Integrative Medicine, Advanced Medical and Dental InstituteUniversiti Sains MalaysiaBertamMalaysia

Personalised recommendations