Advertisement

Resistive Switching and Nonvolatile Memory in TiO2/CuPc Nanocomposite Devices

  • Biswanath MukherjeeEmail author
Article
  • 15 Downloads

Abstract

An organic–inorganic nanocomposite has been prepared as a hybrid memory element, and a bistable data storage device has been fabricated. The composite device, consisting of a spin casted thin film of sol–gel derived titanium dioxide (TiO2) nanoparticles followed by a vacuum evaporated thin film of copper phthalocyanine (CuPc), exhibits conductance switching and nonvolatile memory phenomenon. While the single layer device with TiO2 nanoparticles showed unipolar switching characteristics, the composite device exhibited bipolar switching with highly improved performance. The erase/reset voltage for the single layer TiO2 device is 4.5 V, which reduces to |3| V for the composite device. The on/off current ratio of the composite device measured to be > 104 , which is orders of magnitude higher in comparison to that in the single layer devices. The charge transport mechanism of the devices revealed that trap-related space charge limited conduction mechanism might be responsible for the composite device while it indicates possible formation of filamentary path in the single layer TiO2 based devices leading to ohmic-like conduction. The ability of the composite device to write, erase, read, and refresh the electrical states fulfills the functionality of a dynamic random access memory having potential for next generation low cost memory applications.

Keywords

Memory bistability nanocomposite phthalocyanine random access memory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    C. Sanchez, G.J.A.A. de Soler-Illia, F. Ribot, T. Lalot, C.R. Mayer, and V. Cabuil, Chem. Mater. 13, 3061 (2001).CrossRefGoogle Scholar
  2. 2.
    B. Mukherjee, M. Mukherjee, J. Park, and S. Pyo, J. Phys. Chem. C 114, 567 (2010).CrossRefGoogle Scholar
  3. 3.
    Z.Q. Lin, Chem. -Eur. J. 14, 6294 (2008).CrossRefGoogle Scholar
  4. 4.
    Y.M. Kang, N.G. Park, and D.W. Kim, Appl. Phys. Lett. 86, 113101 (2005).CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, F.S. Riehle, Y. Yuan, H.-F. Schleiermacher, M. Niggemann, G.A. Urban, and M. Kruger, Appl. Phys. Lett. 96, 013304 (2010).CrossRefGoogle Scholar
  6. 6.
    E. Lai, W. Kim, and P. Yang, Nano Res. 1, 123 (2008).CrossRefGoogle Scholar
  7. 7.
    S. Paul, C. Pearson, A. Molloy, M.A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, and M.C. Petty, Nano Lett. 3, 533 (2003).CrossRefGoogle Scholar
  8. 8.
    J. Ouyang, C.-W. Chu, C.R. Szmanda, L.P. Ma, and Y. Yang, Nat. Mater. 3, 918 (2004).CrossRefGoogle Scholar
  9. 9.
    Z.X. Xu, V.A.L. Roy, and P. Stallinga, Appl. Phys. Lett. 90, 223509 (2007).CrossRefGoogle Scholar
  10. 10.
    R.T. Weitz, U. Zschieschang, F. Effenberger, H. Klauk, M. Burghard, and K. Kern, Nano Lett. 7, 22 (2007).CrossRefGoogle Scholar
  11. 11.
    P.P. Banerjee, D.R. Evans, W. Lee, V.Y. Reshetnyak, and N. Tansu, Appl. Opt. 52, HM 1 (2013).CrossRefGoogle Scholar
  12. 12.
    B. Mukherjee and M. Mukherjee, Appl. Phys. Lett. 94, 173510 (2010).CrossRefGoogle Scholar
  13. 13.
    F. Li, T.W. Kim, W. Dong, and Y.H. Kim, Appl. Phys. Lett. 92, 011906 (2008).CrossRefGoogle Scholar
  14. 14.
    F. Li, D.I. Son, B.J. Kim, and T.W. Kim, Appl. Phys. Lett. 93, 021913 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Sökmen, M.K. Kesir, and S.Y. Alomar, Am. J. Nanosci. 3, 63 (2017).Google Scholar
  16. 16.
    C. Chen, V. Ma, and J. Zhao, J. Chem. Soc. Rev. 39, 4206 (2010).CrossRefGoogle Scholar
  17. 17.
    B. Cho, T.-W. Kim, M. Choe, G. Wang, S. Song, and T. Lee, Org. Electron. 10, 473 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Hu, D. Perello, M. Yun, D.-H. Kwon, and M. Kim, Microelectron. Eng. 104, 42 (2013).CrossRefGoogle Scholar
  19. 19.
    Y.H. Do, J.S. Kwak, and J.P. Hong, J. Korean Phys. Soc. 55, 1009 (2009).CrossRefGoogle Scholar
  20. 20.
    G. Tian, D. Wu, S. Qi, Z. Wu, and X. Wang, Macromol. Rapid Commun. 32, 384 (2011).CrossRefGoogle Scholar
  21. 21.
    L. Zhou, J. Mao, Y. Ren, S.T. Han, V.A.L. Roy, and Y. Zhou, Small 14, 1703126 (2018).CrossRefGoogle Scholar
  22. 22.
    H.Y. Lee, Y.S. Chen, P.S. Chen, T.Y. Wu, F. Chen, C.C. Wang, P.J. Tzeng, M.J. Tsai, and C. Lien, IEEE Electron Device Lett. 31, 44 (2010).CrossRefGoogle Scholar
  23. 23.
    H. Fakhouri, W. Smith, J. Pulpytel, A. Zolfaghari, H. Mortaheb, F. Meshkini, R. Jafari, and F.A. Khonsari, J. Nano- Electron. Phys. 3, 26 (2011).Google Scholar
  24. 24.
    W.G. Kim and S.W. Rhee, Microelectron. Eng. 87, 98 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Billen, S. Steudel, R. Müller, J. Genoe, and P. Heremans, Appl. Phys. Lett. 91, 263507 (2007).CrossRefGoogle Scholar
  26. 26.
    C. Hu, M.D. McDaniel, A. Posadas, A.A. Demkov, J.G. Ekerdt, and E.T. Yu, Nano Lett. 14, 4360 (2014).CrossRefGoogle Scholar
  27. 27.
    R. Wasser and M. Aono, Nat. Mater. 6, 833 (2007).CrossRefGoogle Scholar
  28. 28.
    B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, and B. Reichenberg, Tiedke. S. J. Appl. Phys. 98, 033715 (2005).CrossRefGoogle Scholar
  29. 29.
    Y. Ogawa, S. Shindo, Y. Sutou, and J. Koike, Appl. Phys. Lett. 111, 163105 (2017).CrossRefGoogle Scholar
  30. 30.
    M.H. Tang, Z.P. Wang, J.C. Li, Z.Q. Zeng, X.L. Xu, G.Y. Wang, L.B. Zhang, Y.G. Xiao, S.B. Yang, B. Jiang, and J. He, Semicond. Sci. Technol. 26, 075019 (2011).CrossRefGoogle Scholar
  31. 31.
    D. Ielmini, F. Nardi, and C. Cagli, IEEE Trans. Electron Devices 58, 3246 (2011).CrossRefGoogle Scholar
  32. 32.
    C. Wehrenfennig, C.M. Palumbiny, H.J. Snaith, M.B. Johnston, L.S. Mende, and L.M. Herz, J. Phys. Chem. C 119, 9159 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Physics DepartmentNarasinha Dutt CollegeHowrahIndia

Personalised recommendations