Journal of Electronic Materials

, Volume 48, Issue 3, pp 1612–1616 | Cite as

An Attempt to Utilize Hard Magnetic BaFe12O19 Phase as a Cathode for Magnesium Batteries

  • Mahmoud H. Makled
  • E. ShehaEmail author


The sluggish Mg2+ kinetics in host materials is a big challenge that hinders realizing practical magnesium batteries. To overcome this problem, designing and testing a new system as a fast Mg2+ insertion cathode is a promising solution. Herein, hexagonal barium ferrite BaFe12O19 as cathode for magnesium ion batteries is presented for the first time. The M ferrite phase BaFe12O19 is synthesized via the co-precipitation method. X-ray diffraction confirms single hexagonal ferrite phase with lattice constants a = b = 5.49 Å and c = 23.8 Å. Transmission electron microscopy images reflect high porosity with rough surfaces for the ferrite particles. The magnetic study shows that present hexaferrite has a high value of coercivity (5.1 KOe) and saturation magnetization (54 emu/gm). The electrical conductivities are studied as a function of temperature and frequencies. The multi-conduction mechanisms and multilyers structures present in these types of ferrite, make it acceptable for Mg2+ intercalation. The as-prepared BaFe12O19 electrode delivers high initial discharge capacity of 170 mAh g−1. The BaFe12O19 is a promising cathode material for magnesium-ion battery applications.


Hard magnetic barium ferrite cathode magnesium battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is partially financially supported by the Support Development of Scientific Research Centre of Benha University (SDSRC) (Grant No. 1076) and Science Technology Development Fund (Grant No. 12564).


  1. 1.
    Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. Vinayan, C. Bonatto Minella, X. Yu, A. Manthiram, and R.J. Behm, ACS Energy Lett. 3, 2005 (2018).CrossRefGoogle Scholar
  2. 2.
    M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu, Y. Lu, Q. Huang, S. Shi, and X. Yan, ACS Nano 12, 3733 (2018).CrossRefGoogle Scholar
  3. 3.
    F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, and J. Chen, Nat. Chem. 3, 79 (2011).CrossRefGoogle Scholar
  4. 4.
    J. Liu, E. Sheha, S.I. El-Dek, D. Goonetilleke, M. Harguindeguy, and N. Sharma, CrystEngComm 20, 6165 (2018).CrossRefGoogle Scholar
  5. 5.
    C. Hu, H. Cao, S. Wang, N. Wu, S. Qiu, H. Lyu, and J. Liu, New J. Chem. 41, 6427 (2017).CrossRefGoogle Scholar
  6. 6.
    B. Belec, G. Dražić, S. Gyergyek, B. Podmiljšak, T. Goršak, M. Komelj, J. Nogués, and D. Makovec, Nanoscale 9, 17551 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Bai, W. Zhang, L. Qiao, and J. Cao, RSC Adv. 5, 91382 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. Zhao, Y. Huang, Q. Wang, Y. Wang, and M. Zong, J. Sol Gel. Sci. Technol. 66, 238 (2013).CrossRefGoogle Scholar
  9. 9.
    C. Hu, S. Qiu, G. Lu, H. Cao, H. Lv, S. Guo, and J. Liu, RSC Adv. 5, 70749 (2015).CrossRefGoogle Scholar
  10. 10.
    M.H. Makled and M. El-Mansy, J. Ceram. Soc. Jpn. 112, 200 (2004).CrossRefGoogle Scholar
  11. 11.
    E. Sheha and M. El-Deftar, J. Solid State Electrochem. 22, 2671 (2018).CrossRefGoogle Scholar
  12. 12.
    A. Afzali, V. Mottaghitalab, S.S.S. Afghahi, M. Jafarian, and Y. Atassi, J. Magn. Magn. Mater. 442, 224 (2017).CrossRefGoogle Scholar
  13. 13.
    M.H. Makled, J. Appl. Polym. Sci. 126, 969 (2012).CrossRefGoogle Scholar
  14. 14.
    R. Pattanayak, S. Panigrahi, T. Dash, R. Muduli, and D. Behera, Physica B 474, 57 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceBenha UniversityBenhaEgypt

Personalised recommendations