Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1652–1659 | Cite as

The Correlations between Complex Chemical Bond Theory and Microwave Dielectric Properties of Ca2MgSi2O7 Ceramics

  • Mi XiaoEmail author
  • Yanshuang Wei
  • Ping ZhangEmail author
Article
  • 43 Downloads

Abstract

Magnesium melilite (Ca2MgSi2O7) ceramic with tetragonal crystal structure was prepared through the conventional solid-state method. Crystal structure and complex chemical bond theory were used to analyze the microwave properties of Ca2MgSi2O7 ceramics and the correlations between the bond ionicity, lattice energy, bond energy and relative dielectric constant (εr), quality factor (Q × f0), temperature coefficient of resonant frequency (τf) were discussed in depth. Optimum microwave dielectric properties were obtained when sintered at 1300°C for 4 h: εr= 9.86, the dielectric loss (tanδ) was 1.24 × 10−4 (at 1 MHz), Q × f0= 8016 GHz (resonant frequency f0 = 7.90 GHz), τf= − 42 ppm/°C.

Keywords

Ca2MgSi2O7 microwave dielectric properties bond ionicity lattice energy bond energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61671323).

References

  1. 1.
    M.M. Krzmanc, M. Valant, and D. Suvorov, J. Eur. Ceram. Soc. 27, 1181 (2007).CrossRefGoogle Scholar
  2. 2.
    P. Zhang, J. Liao, Y. Zhao, H. Xie, L. Liu, and M. Xiao, J. Mater. Sci.: Mater. Electron. 28, 4946 (2017).Google Scholar
  3. 3.
    H. Wang, Q. Zhang, H. Yang, and H. Sun, Ceram. Int. 34, 1405 (2008).CrossRefGoogle Scholar
  4. 4.
    M.E. Song, J.S. Kim, M.R. Joung, S. Nahm, and Y.S. Kim, J. Am. Ceram. Soc. 91, 2747 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Ohsato, T. Tsunooka, T. Sugiyama, K.I. Kakimoto, and H. Ogawa, J. Electroceram. 17, 445 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Kimata, NW 69, 40 (1982).Google Scholar
  7. 7.
    T. Joseph and M.T. Sebastian, J. Am. Ceram. Soc. 93, 147 (2010).CrossRefGoogle Scholar
  8. 8.
    C. Xu, J. Guo, Y. Li, and H.J. Seo, Opt. Mater. 35, 893 (2013).CrossRefGoogle Scholar
  9. 9.
    I.P. Sahu, J. Mater. Sci.: Mater. Electron. 27, 9094 (2016).Google Scholar
  10. 10.
    I.P. Sahu, D.P. Bisen, R.K. Tamrakar, and R. Shrivastava, Res. Chem. Intermed. 42, 1823 (2016).CrossRefGoogle Scholar
  11. 11.
    X.H. Zhao, M.J. Wang, Q.L. Zhang, H. Yang, L. Hu, and D. Yu, Mater. Lett. 122, 9 (2014).CrossRefGoogle Scholar
  12. 12.
    L.J. Shan and L.X. Zhao, Ceramics, 2, 7 (2007).Google Scholar
  13. 13.
    M. Xiao, J. Lou, Y. Wei, and P. Zhang, Ceram. Int. 44, 885 (2018).CrossRefGoogle Scholar
  14. 14.
    M. Xiao, J. Lou, and Z. Zhou, Ceram. Int. 43, 15567 (2017).CrossRefGoogle Scholar
  15. 15.
    J.C. Phillips, Phys. Rev. Lett. 20, 550 (1968).CrossRefGoogle Scholar
  16. 16.
    J.C. Phillips and J.A. Van Vechten, Phys. Rev. Lett. 22, 705 (1969).CrossRefGoogle Scholar
  17. 17.
    B.F. Levine, J. Chem. Phys. 59, 1463 (1973).CrossRefGoogle Scholar
  18. 18.
    Z.J. Wu, Q.B. Meng, and S.Y. Zhang, Phys. Rev. B 58, 958 (1998).CrossRefGoogle Scholar
  19. 19.
    E.S. Kim and K.H. Yoon, J. Eur. Ceram. Soc. 23, 2397 (2003).CrossRefGoogle Scholar
  20. 20.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
  21. 21.
    P. Zhang, Y. Zhao, and X. Wang, Dalton Trans. 44, 10932 (2015).CrossRefGoogle Scholar
  22. 22.
    J. Petzelt, J. Schwarzbach, and B.P. Gorshunnov, Ferroelectrics 93, 77 (1989).CrossRefGoogle Scholar
  23. 23.
    P. Zhang, Y. Zhao, and L. Li, Phys. Chem. Chem. Phys. 17, 16692 (2015).CrossRefGoogle Scholar
  24. 24.
    R.T. Sanderson, J. Am. Chem. Soc. 105, 2259 (1983).CrossRefGoogle Scholar
  25. 25.
    Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press, 2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Electrical and Information Engineering and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations