Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1568–1573 | Cite as

Valence- and Conduction-Band Offsets for Atomic-Layer-Deposited Al2O3 on (010) (Al0.14Ga0.86)2O3

  • Chaker Fares
  • F. Ren
  • Eric Lambers
  • David C. Hays
  • B. P. Gila
  • S. J. PeartonEmail author
Article
  • 57 Downloads

Abstract

The wide-bandgap ternary (AlxGa1−x)2O3 forms a heterostructure system with Ga2O3 that is attracting attention for modulation-doped field-effect transistors. The options for gate dielectric on (AlxGa1−x)2O3 are limited by the need for adequate band offsets at the heterointerface. Al2O3 deposited by atomic layer deposition (ALD) is one option due to its large bandgap (6.9 eV). We measured the valence-band offset at the Al2O3/(Al0.14Ga0.86)2O3 heterointerface using x-ray photoelectron spectroscopy (XPS). Al2O3 was deposited by ALD onto single-crystal β-(Al0.14Ga0.86)2O3 (bandgap 5.0 eV) grown by molecular beam epitaxy (MBE). The valence-band offset was determined to be 0.23 ± 0.04 eV (straddling gap, type I alignment) for ALD Al2O3 on β-(Al0.14Ga0.86)2O3. The conduction-band offset was 1.67 ± 0.30 eV, providing good electron confinement.

Keywords

Band offset dielectric (AlGa)2O3 atomic layer deposition band alignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The project or effort depicted was partially sponsored by the Department of the Defense, Defense Threat Reduction Agency, HDTRA1-17-1-011, monitored by Jacob Calkins.

References

  1. 1.
    A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, Jpn. J. Appl. Phys. 55, 1202A2 (2016).CrossRefGoogle Scholar
  2. 2.
    M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakosh, Semicond. Sci. Technol. 31, 034001 (2016).CrossRefGoogle Scholar
  3. 3.
    J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback, and J.A. Simmons, Adv. Electron. Mater. 4, 1600501 (2018).CrossRefGoogle Scholar
  4. 4.
    S.J. Pearton, J. Yang, P.H. Cary IV, F. Ren, J. Kim, M.J. Tadjer, and M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018).CrossRefGoogle Scholar
  5. 5.
    M. Higashiwaki and G.H. Jessen, Appl. Phys. Lett. 112, 060401 (2018).CrossRefGoogle Scholar
  6. 6.
    S. Oh, J. Kim, F. Ren, S.J. Pearton, and J. Kim, J. Mater. Chem. C 4, 9245 (2016).CrossRefGoogle Scholar
  7. 7.
    K.D. Chabak, N. Moser, A.J. Green, D.E. Walker Jr., S.E. Tetlak, E. Heller, A. Crespo, R. Fitch, J.P. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li, and G. Jessen, Appl. Phys. Lett. 109, 213501 (2016).CrossRefGoogle Scholar
  8. 8.
    A.J. Green, K.D. Chabak, E.R. Heller, R.C. Fitch Jr., M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S.E. Tetlak, A. Crespo, K. Leedy, and G.H. Jessen, IEEE Electron Device Lett. 37, 902 (2016).CrossRefGoogle Scholar
  9. 9.
    M.J. Tadjer, N.A. Mahadik, V.D. Wheeler, E.R. Glaser, L. Ruppalt, A.D. Koehler, K.D. Hobart, C.R. Eddy Jr., and F.J. Kub, ECS J. Solid State Sci. Technol. 5, P468 (2016).CrossRefGoogle Scholar
  10. 10.
    K.D. Chabak, J.P. McCandless, N.A. Moser, A.J. Green, K. Mahalingam, A. Crespo, N. Hendricks, B.B. Howe, S.E. Tetlak, K. Leedy, R.C. Fitch, D. Wakimoto, K. Sasaki, A. Kuramata, and G.H. Jessen, IEEE Electron Device Lett. 39, 67 (2018).CrossRefGoogle Scholar
  11. 11.
    K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, Appl. Phys. Lett. 110, 103506 (2017).CrossRefGoogle Scholar
  12. 12.
    M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, IEEE Electron Device Lett. 37, 212 (2016).CrossRefGoogle Scholar
  13. 13.
    K. Zeng, A. Vaidya, and U. Singisetti, IEEE Electron Device Lett. 39, 1385 (2018).CrossRefGoogle Scholar
  14. 14.
    J.C. Yang, F. Ren, M.J. Tadjer, and A. Kuramata, ECS J. Solid State Sci. Technol. 7, 92 (2018).CrossRefGoogle Scholar
  15. 15.
    X. Yan, I.S. Esqueda, J. Ma, J. Tice, H. Wang, X. Yan, I.S. Esqueda, J. Ma, J. Tice, and H. Wang, Appl. Phys. Lett. 112, 32101 (2018).CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, A. Neal, Z. Xia, C. Joishi, J.M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J.P. Heremans, and S. Rajan, Appl. Phys. Lett. 112, 173502 (2018).CrossRefGoogle Scholar
  17. 17.
    J. Robertson, J. Vac. Sci. Technol. B 18, 1875 (2000).CrossRefGoogle Scholar
  18. 18.
    S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A.R. Arehart, J. Hwang, and S. Lodha, Appl. Phys. Lett. 111, 023502 (2017).CrossRefGoogle Scholar
  19. 19.
    E. Ahmadi, O.S. Koksaldi, X. Zheng, T. Mates, Y. Oshima, U.K. Mishra, and J.S. Speck, Appl. Phys. Express 10, 071101 (2017).CrossRefGoogle Scholar
  20. 20.
    T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, and M. Kasu, Appl. Phys. Express 10, 035701 (2017).CrossRefGoogle Scholar
  21. 21.
    T. Oshima, T. Okuno, N. Arai, Y. Kobayash, and S. Fujita, Jpn. J. Appl. Phys. 48, 070202 (2009).CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, and S. Rajan, Appl. Phys. Lett. 112, 233503 (2018).CrossRefGoogle Scholar
  23. 23.
    F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, Appl. Phys. Lett. 105, 162107 (2014).CrossRefGoogle Scholar
  24. 24.
    J. Yang, F. Ren, M. Tadjer, S.J. Pearton, and A. Kuramata, 2.3 kV field-plated vertical Ga2O3 Schottky rectifiers and 1 A forward current with 650 V reverse breakdown, in: 76th Device Research Conference (DRC) (2018), pp. 1–2.Google Scholar
  25. 25.
    K. Zeng, A. Vaidya, and U. Singisetti, 710 V breakdown voltage in field plated Ga2O3 MOSFET, in: 2018 76th device research conference (DRC) (2018), pp. 1–2.Google Scholar
  26. 26.
    R. Wakabayashi, M. Hattori, K. Yoshimatsu, K. Horiba, H. Kumigashira, and A. Ohtomo, Appl. Phys. Lett. 112, 232103 (2018).CrossRefGoogle Scholar
  27. 27.
    H. Peelaers, J.B. Varley, J.S. Speck, and C.G. Van de Walle, Appl. Phys. Lett. 112, 242101 (2018).CrossRefGoogle Scholar
  28. 28.
    Z. Feng, Q. Feng, J. Zhang, X. Li, L. Fuguo Li, H.-Y.C. Huang, L. Hong-Liang, and Y. Hao, Appl. Surf. Sci. 434, 440 (2018).CrossRefGoogle Scholar
  29. 29.
    Y. Jia, K. Zheng, J.S. Wallace, J.A. Gardella, and U. Singisetti, Appl. Phys. Lett. 106, 102107 (2015).CrossRefGoogle Scholar
  30. 30.
    K. Konishi, T. Kamimura, M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, Phys. Status Solidi B 253, 623 (2016).CrossRefGoogle Scholar
  31. 31.
    T. Kamimura, K. Sasaki, M.H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, and M. Higashiwaki, Appl. Phys. Lett. 104, 192104 (2014).CrossRefGoogle Scholar
  32. 32.
    T.-H. Hung, K. Sasaki, A. Kuramata, D.N. Nath, P.S. Park, C. Polchinski, and S. Rajan, Appl. Phys. Lett. 104, 162106 (2014).CrossRefGoogle Scholar
  33. 33.
    M. Hattori, T. Oshima, R. Wakabayashi, K. Yoshimatsu, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Horiba, H. Kumigashira, and A. Ohtomo, Jpn. J. Appl. Phys. 55, 1202B6 (2016).CrossRefGoogle Scholar
  34. 34.
    V.D. Wheeler, D.I. Shahin, M.J. Tadjer, and C.R. Eddy Jr., ECS J. Solid State Sci. Technol. 6, Q3052 (2017).CrossRefGoogle Scholar
  35. 35.
    W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Zhang, Nanoscale Res. Lett. 7, 562 (2012).CrossRefGoogle Scholar
  36. 36.
    S.H. Chang, Z.Z. Chen, W. Huang, X.C. Liu, B.Y. Chen, Z.Z. Li, and E.W. Shi, Chin. Phys. B 20, 116101 (2011).CrossRefGoogle Scholar
  37. 37.
    Z. Chen, K. Hishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, Appl. Phys. Lett. 109, 102106 (2016).CrossRefGoogle Scholar
  38. 38.
    R. Schmidt-Grund, C. Kranert, H. von Wenckstern, V. Zviagin, M. Lorenz, and M. Grundmann, J. Appl. Phys. 117, 165307 (2015).CrossRefGoogle Scholar
  39. 39.
    P.H. Carey, F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, and A. Kuramata, J. Vac. Sci. Technol. B 35, 041201 (2017).CrossRefGoogle Scholar
  40. 40.
    P. Carey, F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, and A. Kuramata, Jpn. J. Appl. Phys. 56, 071101 (2017).CrossRefGoogle Scholar
  41. 41.
    P. Carey, F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, and A. Kuramata, Vacuum 142, 52 (2017).CrossRefGoogle Scholar
  42. 42.
    D.C. Hays, B.P. Gila, S.J. Pearton, A. Trucco, R. Thorpe, and F. Ren, J. Vac. Sci. Technol. B 35, 011206 (2017).CrossRefGoogle Scholar
  43. 43.
    D.C. Hays, B.P. Gila, S.J. Pearton, and F. Ren, Appl. Phys. Rev. 4, 021301 (2017).CrossRefGoogle Scholar
  44. 44.
    E.A. Kraut, R.W. Grant, J.R. Waldrop, and S.P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).CrossRefGoogle Scholar
  45. 45.
    E. Bersch, M. Di, S. Consiglio, R.D. Clark, G.J. Leusink, and A.C. Diebold, J. Appl. Phys. 107, 043702 (2010).CrossRefGoogle Scholar
  46. 46.
    H.C. Shin, D. Tahir, S. Seo, Y.R. Denny, S.K. Oh, H.J. Kang, S. Heo, J.G. Chung, J.C. Lee, and S. Tougaard, Surf. Interface Anal. 44, 623 (2012).CrossRefGoogle Scholar
  47. 47.
    P.H. Carey IV, F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, and A. Kuramata, Vacuum 141, 103 (2017).CrossRefGoogle Scholar
  48. 48.
    X. Guo, H. Zheng, S.W. King, V.V. Afanas’ev, M.R. Baklanov, J.-F.D. Marneffe, Y. Nishi, and J.L. Shohet, Appl. Phys. Lett. 107, 082903 (2015).CrossRefGoogle Scholar
  49. 49.
    H.-K. Dong and L.-B. Shi, Chin. Phys. Lett. 33, 016101 (2016).CrossRefGoogle Scholar
  50. 50.
    J. Xu, Y. Teng, and F. Teng, Sci. Rep. 6, 32457 (2016).CrossRefGoogle Scholar
  51. 51.
    M. Yang, R.Q. Wu, Q. Chen, W.S. Deng, Y.P. Feng, J.W. Chai, J.S. Pan, and S.J. Wang, Appl. Phys. Lett. 94, 142903 (2009).CrossRefGoogle Scholar
  52. 52.
    A. Klein, J. Phys. C Solid 27, 134201 (2015).Google Scholar
  53. 53.
    S. Li, F. Chen, R. Schafranek, T.J.M. Bayer, K. Rachut, A. Fuchs, S. Siol, M. Weidner, M. Hohmann, V. Pfeifer, J. Morasch, C. Ghinea, E. Arveux, R. Gunzler, J. Gassmann, C. Korber, Y. Gassenbauer, F. Sauberlich, G.V. Rao, S. Payan, M. Maglione, C. Chirila, L. Pintilie, L. Jia, K. Ellmer, M. Naderer, K. Reichmann, U. Bottger, S. Schmelzer, R.C. Frunza, H. Ursic, B. Malic, W.-B. Wu, P. Erhart, and A. Klein, Phys. Status Solidi Rapid Res. Lett. 8, 571 (2014).CrossRefGoogle Scholar
  54. 54.
    B.W. Krueger, C.S. Dandeneau, E.M. Nelson, S.T. Dunham, F.S. Ohuchi, and M.A. Olmstead, J. Am. Ceram. Soc. 99, 2467 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Nanoscale Research FacilityUniversity of FloridaGainesvilleUSA
  3. 3.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations