Journal of Electronic Materials

, Volume 48, Issue 3, pp 1746–1753 | Cite as

Microstructures and Mechanical Properties of the Sn58wt.%Bi Composite Solders with Sn Decorated MWCNT Particles

  • Hyun-Joon Park
  • Choong-Jae Lee
  • Kyung Deuk Min
  • Seung-Boo JungEmail author


The mechanical properties and microstructures of Sn58Bi (in wt.%) composite solders with Sn decorated multiwalled carbon nanotube (Sn MWCNT) particles were investigated. The contents of Sn MWCNT particles were 0, 0.05, 0.1, and 0.2 wt.%. Sn58Bi composite solder pastes were printed on printed circuit board (PCB) substrates and bonded to the substrates using reflow processes (1, 2, 3, 5, and 7 times). This study describes the effect of Sn MWCNTs content and the number of reflow processes on the mechanical properties and microstructures of Sn58Bi composite solders. Mechanical properties were investigated using a low speed ball shear test. In the shear test, the shear strength increased by 7.07%, and the fracture energy increased by 14.4% with 0.1 wt.% of Sn MWCNT particles after 1one reflow. The number of reflows did not significantly affect the shear strength, but the fracture energy increased with increasing content of Sn MWCNT particles. Cross-sectional microstructures and fracture surfaces were observed by scanning electron microscopy (SEM). Sn MWCNT particles in the solder matrix were observed on polished surfaces of SEM images and were also identified by a Raman spectrometer. After the shear test, brittle failure occurred in all joints, indicating no influence of MWCNT particles.


Sn58wt.%Bi solder multiwalled carbon nanotubes Sn decoration mechanical properties microstructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20174030201800). This research was financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the “Regional Specialized Industry Development Program”(reference number P0002867) supervised by the Korea Institute for Advancement of Technology (KIAT).


  1. 1.
    K.-N. Tu and K. Zeng, Mat. Sci. Eng. R 34, 1 (2001).CrossRefGoogle Scholar
  2. 2.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mat. Sci. Eng. R 44, 1 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Abtew and G. Selvaduray, Mat. Sci. Eng. R 27, 95 (2000).CrossRefGoogle Scholar
  4. 4.
    R.A. Islam, Y.C. Chan, W. Jillek, and S. Islam, Microelectron. J. 37, 705 (2006).CrossRefGoogle Scholar
  5. 5.
    J.-W. Yoon and S.-B. Jung, J. Alloys Compd. 448, 177 (2008).CrossRefGoogle Scholar
  6. 6.
    C.-Y. Lee, J.-W. Yoon, Y.-J. Kim, and S.-B. Jung, Microelectron. Eng. 82, 561 (2005).CrossRefGoogle Scholar
  7. 7.
    J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, and D.A. Hutt, Acta Mater. 54, 2907 (2006).CrossRefGoogle Scholar
  8. 8.
    W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, and A. Garcia, J. Alloys Compd. 572, 97 (2013).CrossRefGoogle Scholar
  9. 9.
    S.K. Kang and A.K. Sarkhel, J. Electron. Mater. 23, 701 (1994).CrossRefGoogle Scholar
  10. 10.
    W. Tomlinson and I. Collier, J. Mater. Sci. 22, 1835 (1987).CrossRefGoogle Scholar
  11. 11.
    L. Shen, Z.Y. Tan, and Z. Chen, Mater. Sci. Eng. A 561, 232 (2013).CrossRefGoogle Scholar
  12. 12.
    T. Hu, Y. Li, Y.-C. Chan, and F. Wu, Microelectron. Reliab. 55, 1226 (2015).CrossRefGoogle Scholar
  13. 13.
    D.C. Lin, G.X. Wang, T.S. Srivatsan, M. Al-Hajri, and M. Petraroli, Mater. Lett. 57, 3193 (2003).CrossRefGoogle Scholar
  14. 14.
    L. Zhang, W. Tao, J. Liu, Y. Zhang, Z. Cheng, C. Andersson, Y. Gao, and Q. Zhai, In Electronic Packaging Technology & High Density Packaging, 2008. ICEPT-HDP 2008. International Conference on, (IEEE: 2008), pp 1–5.Google Scholar
  15. 15.
    S. Iijima, Nature 354, 56 (1991).CrossRefGoogle Scholar
  16. 16.
    P. He, X.-C. LÜ, T.-S. Lin, H.-X. Li, J. An, X. Ma, J.-C. Feng, Y. Zhang, Q. Li, and Y.-Y. Qian, Trans. Nonferrous Met. Soc. China 22, s692 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Demoustier, E. Minoux, M. Le Baillif, M. Charles, and A. Ziaei, C R Phys. 9, 53 (2008).CrossRefGoogle Scholar
  18. 18.
    S. Xu, Y.C. Chan, K. Zhang, and K.C. Yung, J. Alloys Compd. 595, 92 (2014).CrossRefGoogle Scholar
  19. 19.
    S.M.L. Nai, J. Wei, and M. Gupta, J. Electron. Mater. 35, 1518 (2006).CrossRefGoogle Scholar
  20. 20.
    L. Yang, H. Liu, Y. Zhang, and H. Yu, J. Mater. Eng. Perform. 26, 6028 (2017).CrossRefGoogle Scholar
  21. 21.
    H. Sun, Y.C. Chan, and F. Wu, J. Mater. Sci. Mater. Electron. 26, 5318 (2015).CrossRefGoogle Scholar
  22. 22.
    H. Sun, X. Hu, Y.C. Chan, and F. Wu, In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), (2017), pp 1981–1986.Google Scholar
  23. 23.
    C.-J. Lee, J.J. Moon, K.-H. Jung, and S.-B. Jung, In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), (2017), pp 2225–2230.Google Scholar
  24. 24.
    L. Yang, W. Zhou, Y. Liang, W. Cui, and P. Wu, Mater. Sci. Eng. Struct. 642, 7 (2015).CrossRefGoogle Scholar
  25. 25.
    S. Chantaramanee, S. Wisutmethangoon, L. Sikong, and T. Plookphol, J. Mater. Sci. Mater. Electron. 24, 3707 (2013).CrossRefGoogle Scholar
  26. 26.
    H. Ohtani and K. Ishida, J. Electron. Mater. 23, 747 (1994).CrossRefGoogle Scholar
  27. 27.
    C. Zhang, S.-D. Liu, G.-T. Qian, Z. Jian, and X. Feng, Trans. Nonferrous Met. Soc. China 24, 184 (2014).CrossRefGoogle Scholar
  28. 28.
    F. Wang, L. Zhou, Z. Zhang, J. Wang, X. Wang, and M. Wu, J. Electron. Mater. 46, 6204 (2017).CrossRefGoogle Scholar
  29. 29.
    L. Zhang and K.N. Tu, Mat Sci Eng R 82, 1 (2014).CrossRefGoogle Scholar
  30. 30.
    S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, and R.J. Kalenczuk, Mater. Sci. Pol. 26, 433 (2008).Google Scholar
  31. 31.
    P.T. Araujo, M. Terrones, and M.S. Dresselhaus, Mater. Today 15, 98 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Hyun-Joon Park
    • 1
  • Choong-Jae Lee
    • 1
  • Kyung Deuk Min
    • 1
  • Seung-Boo Jung
    • 1
    Email author
  1. 1.School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations