Journal of Electronic Materials

, Volume 48, Issue 3, pp 1617–1628 | Cite as

A Comparative Study of Gas Sensing Properties of Tungsten Oxide, Tin Oxide and Tin-Doped Tungsten Oxide Thin Films for Acetone Gas Detection

  • Smiti SachdevaEmail author
  • Ajay Agarwal
  • Ravinder Agarwal


Nowadays, various metal oxide thin films have been used for the purpose of gas sensing. This research depicts a comparison of gas sensing properties among four different metal oxide thin films, namely, tungsten dioxide (WO2), tungsten trioxide (WO3), tin oxide (SnO2) and tin doped tungsten trioxide (Sn-doped WO3), for detecting acetone gas. Each metal oxide thin film was subjected tp acetone gas flow of various concentrations and the corresponding changes in resistance were calculated. Characterizations such as x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and gas sensing characterization for recording resistance changes have been performed. Each film was annealed at different temperatures for 1 h (WO2 and WO3 at 500°C, SnO2 at 300°C and Sn-doped WO3 at 400°C) so as to achieve an optimum grain size for sensing. The XRD patterns reveal formation of an orthorhombic phase of WO2, hexagonal phase of WO3 and orthorhombic phase of SnO2. AFM and SEM depict clear images of grain boundaries on the film. SnO2 has been found to be the best thin film for sensing acetone gas. Operational optimum temperature for sensing acetone gas has been calculated for each thin film (260°C for WO2, 220°C for WO3, 360°C for SnO2 and 300°C for Sn-doped WO3). It can detect a very low concentration of 1.5 ppm acetone gas with a good resistance response change of 30%. Various concentrations of acetone gas, namely, 1.5 ppm, 3 ppm, 5 ppm, 7 ppm, 10 ppm, 15 ppm and 20 ppm, have been detected using these metal oxide thin films, and thus the comparison has been made. The response time for SnO2 is approximately 3 min and recovery time is approximately 4 min.


Metal oxide thin films tungsten oxide tin oxide tin-doped tungsten oxide surface metrology topography gas sensing acetone gas detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors are thankful to Dr. Prakash Gopalan, Director, Thapar University, Patiala, and Prof. Santanu Chaudhury, Director, CSIR-CEERI, Pilani, for providing the research facilities. Financial support provided by Department of Science and Technology (DST-INSPIRE Fellowship), New Delhi, Govt. of India is gratefully acknowledged.


  1. 1.
    W.H. Brattain and J. Bardeen, Bell Syst. Tech. J. 32, 1 (1953).Google Scholar
  2. 2.
    B. Guo, S. Xu, Q. Yu, F. Sui, A. Xu, and N. Zhou, MAPAN. 32, 265 (2017).Google Scholar
  3. 3.
    G. Lentka, MAPAN. 32, 223 (2017).Google Scholar
  4. 4.
    J.G. Watson, J.C. Chow, R.J. Tropp, X.L. Wang, S.D. Kohl, and L.A. Chen, MAPAN. 28, 167 (2013).Google Scholar
  5. 5.
    S. Sachdeva, A. Agarwal, and R. Agarwal, MAPAN. 33, 57 (2018).Google Scholar
  6. 6.
    R.S. Khadayate, J.V. Sali, and P.P. Patil, Talanta 72, 1077 (2007).Google Scholar
  7. 7.
    M. Govender, D.E. Motaung, B.W. Mwakikunga, S. Umapathy, S. Sil, A.K. Prasad, A.G. Machatine, and H.W. Kunert, Sensors 1–4 (2013).Google Scholar
  8. 8.
    G.J. Li and S. Kawi, Talanta 45, 759 (1988).Google Scholar
  9. 9.
    X.L. Li, T.J. Lou, X.M. Sun, and Y.D. Li, Inorg. Chem. 43, 5442 (2004).Google Scholar
  10. 10.
    M. Penza, M.A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, Sens. Actuator B-Chem. 50, 9 (1988).Google Scholar
  11. 11.
    C.G. Granqvist, Sol. Energy Mater. Sol. Cells 60, 201 (2000).Google Scholar
  12. 12.
    J. Zhang, W. Zhang, Z. Yang, Z. Yu, X. Zhang, T.C. Chang, and A. Javey, Sens. Actuator B-Chem. 202, 708 (2014).Google Scholar
  13. 13.
    I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, and J.R. Morante, Sens. Actuator B-Chem. 93, 475 (2003).Google Scholar
  14. 14.
    Q.Q. Jia, H.M. Ji, D.H. Wang, X. Bai, X.H. Sun, and Z.G. Jin, J. Mater. Chem. A. 2, 13602 (2014).Google Scholar
  15. 15.
    Z. Liu, M. Miyauchi, T. Yamazaki, and Y. Shen, Sens. Actuator B-Chem. 140, 514 (2009).Google Scholar
  16. 16.
    C.S. Rout, M. Hegde, and C.N. Rao, Sens. Actuator B-Chem. 128, 488 (2008).Google Scholar
  17. 17.
    J. Tamaki, A. Hayashi, Y. Yamamoto, and M. Matsuoka, Sens. Actuator B-Chem. 95, 111 (2003).Google Scholar
  18. 18.
    K. Aguir, C. Lemire, and D.B. Lollman, Sens. Actuator B-Chem. 84, 1 (2002).Google Scholar
  19. 19.
    C. Cantalini, M.Z. Atashbar, Y. Li, M.K. Ghantasala, S. Santucci, W. Wlodarski, and M. Passacantando, J. Vac. Sci. Technol. 17, 1873 (1999).Google Scholar
  20. 20.
    A. Monteiro, M.F. Costa, B. Almeida, V. Teixeira, J. Gago, and E. Roman, Vacuum 64, 287 (2002).Google Scholar
  21. 21.
    A.D. Kuypers, C.I. Spee, J.L. Linden, G. Kirchner, J.F. Forsyth, and A. Mackor, Surf. Coat. Technol. 74, 1033 (1995).Google Scholar
  22. 22.
    M. Tong, G. Dai, and D. Gao, Mater. Chem. Phys. 69, 176 (2001).Google Scholar
  23. 23.
    M. Penza, G. Cassano, and F. Tortorella, Sens. Actuator B-Chem. 81, 115 (2001).Google Scholar
  24. 24.
    L. Lozzi, L. Ottaviano, M. Passacantando, S. Santucci, and C. Cantalini, Thin Solid Films 391, 224 (2001).Google Scholar
  25. 25.
    M. Regragui, V. Jousseaume, M. Addou, A. Outzourhit, J.C. Bernede, and B. El Idrissi, Thin Solid Films 397, 238 (2001).Google Scholar
  26. 26.
    H.A. Wriedt, Bull. Alloy Phase Diagr. 10, 368 (1989).Google Scholar
  27. 27.
    E.D. Desi, J. Am. Chem. Soc. 19, 213 (1897).Google Scholar
  28. 28.
    A.F. Wells, Structural Inorganic Chemistry (Oxford: Oxford University Press, 2012).Google Scholar
  29. 29.
    F.R. Sale, Thermochim. Acta 30, 163 (1979).Google Scholar
  30. 30.
  31. 31.
    T. Maekawa, K. Suzuki, T. Takada, T. Kobayashi, and M. Egashira, Sens. Actuator B-Chem. 80, 51 (2001).Google Scholar
  32. 32.
    S.C. Ray, M.K. Karanjai, and D. DasGupta, Surf. Coat. Technol. 102, 73 (1988).Google Scholar
  33. 33.
    Y.S. Choe, Sens. Actuator B-Chem. 77, 200 (2001).Google Scholar
  34. 34.
    G. Sakai, N.S. Baik, N. Miura, and N. Yamazoe, Sens. Actuator B-Chem. 77, 116 (2001).Google Scholar
  35. 35.
    K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).Google Scholar
  36. 36.
    R. Banerjee and D. Das, Thin Solid Films 149, 291 (1987).Google Scholar
  37. 37.
    C. Tatsuyama and S. Ichimura, Jpn. J. Appl. Phys. 15, 843 (1976).Google Scholar
  38. 38.
    A. Aoki and H. Sasakura, Jpn. J. Appl. Phys. 9, 582 (1970).Google Scholar
  39. 39.
    R.S. Niranjan and I.S. Mulla, Mater. Sci. Eng., B 103, 103 (2003).Google Scholar
  40. 40.
    N.S. Baik, G. Sakai, N. Miura, and N. Yamazoe, Sens. Actuator B-Chem. 63, 74 (2000).Google Scholar
  41. 41.
    R. Dolbec, M.A. El Khakani, A.M. Serventi, and R.G. Saint-Jacques, Sens. Actuator B-Chem. 93, 566 (2003).Google Scholar
  42. 42.
    H. Yan, G.H. Chen, W.K. Man, S.P. Wong, and R.W. Kwok, Thin Solid Films 326, 88 (1998).Google Scholar
  43. 43.
    G.G. Mandayo, E. Castano, F.J. Gracia, A. Cirera, A. Cornet, and J.R. Morante, Sens. Actuator B-Chem. 95, 90 (2003).Google Scholar
  44. 44.
    E. Comini, G. Faglia, and G. Sberveglieri, Sens. Actuator B-Chem. 78, 73 (2001).Google Scholar
  45. 45.
    S. Liu, F. Zhang, H. Li, T. Chen, and Y. Wang, Sens. Actuator B-Chem. 162, 259 (2012).Google Scholar
  46. 46.
    K.W. Kao, M.C. Hsu, Y.H. Chang, S. Gwo, and J.A. Yeh, Sensors. 12, 7157 (2012).Google Scholar
  47. 47.
    A. Manolis, Clin. Chem. 29, 5 (1983).Google Scholar
  48. 48.
    T.D. Minh, D.R. Blake, and P.R. Galassetti, Diabetes Res. Clin. Pract. 97, 195 (2012).Google Scholar
  49. 49.
    M. Righettoni and A. Tricoli, J. Breath Res. 5, 037109 (2011).Google Scholar
  50. 50.
    M. Righettoni, A. Tricoli, and S.E. Pratsinis, Anal. Chem. 82, 3581 (2010).Google Scholar
  51. 51.
    S. Durrani, M.F. Al-Kuhaili, I.A. Bakhtiari, and M.B. Haider, Sensors 12, 2598 (2012).Google Scholar
  52. 52.
    A.A. Ziabari, S.M. Rozati, Z. Bargbidi, and G. Kiriakidis, Trans. Electr. Electron. Mater. 13, 111 (2012).Google Scholar
  53. 53.
    K. Zakrzewska, Thin Solid Films 391, 229 (2001).Google Scholar
  54. 54.
    I. Horcas, R. Fernández, J.M. Gomez-Rodriguez, J.W. Colchero, J.W. Gómez-Herrero, and A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).Google Scholar
  55. 55.
    S. Sachdeva, R. Agarwal, and A. Agarwal, Bull. Mater. Sci. 41, 105 (2018). Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Thapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.CSIR – Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations