Journal of Electronic Materials

, Volume 48, Issue 5, pp 2712–2717 | Cite as

Sintering Characteristics and Microwave Dielectric Properties of Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6 Ceramic Doped with LiF for LTCC Applications

  • Y. K. Yang
  • H. L. Pan
  • H. T. WuEmail author


In the current study, LiF as a sintering agent was chosen to achieve the low temperature sintering of Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6 (LMTS) ceramics. LMTS ceramics with 1–4 wt.% LiF additions were prepared by a solid-state reaction. The influence of LiF-doping on x-ray diffraction patterns, apparent density, micro-morphology and microwave dielectric properties were discussed in depth. With different LiF additions, LMTS ceramics show a rock salt structured pure phase. A small amount of LiF addition can significantly promote sintering due to the liquid-phase sintering. Compact samples (> 95% of theoretical density) can be obtained at 950°C for LMTS with 2–4 wt.% LiF addition ceramics. Particularly, LMTS with 4 wt.% LiF additional ceramic exhibited optimal microwave dielectric properties at 950°C (εr = 14.9, Q × f=68132 GHz and τf = − 39.24 ppm/°C). Moreover, LMTS ceramics possessed excellent chemical compatibility with silver, implying that the LMTS-LiF ceramic is a potential candidate for low temperature co-fired ceramic (LTCC).


Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6 LiF microwave dielectric ceramics LTCC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation (No. 51472108) and Project funded by China Postdoctoral Science Foundation (2017M612341). The authors are thankful for the help of Professor ZhenXing Yue and postdoctoral Jie Zhang on the measurement of microwave properties in Tsinghua University.


  1. 1.
    G. Wang, H.W. Zhang, C. Liu, H. Su, L.J. Jia, J. Li, X. Huang, and G.W. Gan, J. Electron. Mater. 47, 4672 (2018).CrossRefGoogle Scholar
  2. 2.
    Z.X. Wang, C.L. Yuan, B.H. Zhu, Q. Feng, F. Liu, L. Miao, C.R. Zhou, and G.H. Chen, J. Mater. Sci.: Mater. Electron. 29, 1817 (2018).Google Scholar
  3. 3.
    R.Z. Zuo, Y.D. Xu, M. Shi, W.Q. Li, and L.G. He, J. Eur. Ceram. Soc. 38, 4677 (2018).CrossRefGoogle Scholar
  4. 4.
    Y. Wang, S.B. Zhang, T.L. Tang, W.S. Xia, and L.W. Shi, Mater. Lett. 231, 1 (2018).CrossRefGoogle Scholar
  5. 5.
    F. Liu, J.J. Qu, C.L. Yuan, and G.H. Chen, Mater. Res. Bull. 98, 8 (2018).CrossRefGoogle Scholar
  6. 6.
    W.S. Xia, F.Y. Yang, G.Y. Zhang, K. Han, and D.C. Guo, J. Alloys Compd. 656, 470 (2016).CrossRefGoogle Scholar
  7. 7.
    W.S. Xia, F. Jin, M. Wang, X. Wang, G.Y. Zhang, and L.W. Shi, J. Mater. Sci.: Mater. Electron. 27, 1100 (2016).Google Scholar
  8. 8.
    W.S. Xia, G.Y. Zhang, L.W. Shi, and M.M. Zhang, Mater. Lett. 124, 64 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Wang, L.Y. Zhang, S.B. Zhang, W.S. Xia, and L.W. Shi, Mater. Lett. 219, 233 (2018).CrossRefGoogle Scholar
  10. 10.
    W.S. Xia, L.Y. Zhang, Y. Wang, J.T. Zhang, R.R. Feng, and L.W. Shi, J. Mater. Sci.: Mater. Electron. 28, 18437 (2017).Google Scholar
  11. 11.
    H. Yang, S.R. Zhang, Z.X. Fang, H.T. Chen, Z. Xiong, and B. Tang, J. Mater. Sci.: Mater. Electron. 29, 4533 (2018).Google Scholar
  12. 12.
    Z.Z. Weng, Z.Y. Hana, F. Xiao, H. Xue, and D.L. Peng, Ceram. Int. 44, 14145 (2018).CrossRefGoogle Scholar
  13. 13.
    Z.F. Fu, P. Liu, J.L. Ma, X.G. Zhao, and H.W. Zhang, J. Eur. Ceram. Soc. 36, 625 (2016).CrossRefGoogle Scholar
  14. 14.
    H.T. Wu and E.S. Kim, RSC Adv. 6, 47443 (2016).CrossRefGoogle Scholar
  15. 15.
    H.F. Zhou, X.H. Tan, J. Huang, N. Wang, G.C. Fan, and X.L. Chen, J. Alloys Compd. 696, 1255 (2017).CrossRefGoogle Scholar
  16. 16.
    P. Zhang, H. Xie, Y.G. Zhao, and M. Xiao, J. Alloys Compd. 689, 246 (2016).CrossRefGoogle Scholar
  17. 17.
    Z.X. Fang, B. Tang, F. Si, and S.R. Zhang, Ceram. Int. 43, 1682 (2017).CrossRefGoogle Scholar
  18. 18.
    Z.F. Fu, P. Liu, J.L. Ma, X.M. Chen, and H.W. Zhang, Mater. Lett. 164, 436 (2016).CrossRefGoogle Scholar
  19. 19.
    Z.F. Fu, J.L. Ma, X.S. Zhang, and B. Wang, Ferroelectrics 510, 50 (2017).CrossRefGoogle Scholar
  20. 20.
    Z.F. Fu, J.L. Ma, P. Liu, and Y. Liu, Mater. Chem. Phys. 200, 264 (2017).CrossRefGoogle Scholar
  21. 21.
    J.L. Ma, Z.F. Fu, P. Liu, L.P. Zhao, and B.C. Guo, J. Alloys Compd. 709, 299 (2017).CrossRefGoogle Scholar
  22. 22.
    H.L. Pan, L. Cheng, and H.T. Wu, Ceram. Int. 43, 15018 (2017).CrossRefGoogle Scholar
  23. 23.
    H.L. Pan, Y.W. Zhang, and H.T. Wu, Ceram. Int. 44, 3464 (2018).CrossRefGoogle Scholar
  24. 24.
    X.H. Zhang, Y.M. Ding, and J.J. Bian, J. Mater. Sci.: Mater. Electron. 28, 12755 (2017).Google Scholar
  25. 25.
    R.Z. Zuo, J. Zhang, J. Song, and Y.D. Xu, J. Am. Ceram. Soc. 101, 569 (2018).CrossRefGoogle Scholar
  26. 26.
    B.W. Hakki and P.D. Coleman, IEEE Trans. 8, 402 (1960).Google Scholar
  27. 27.
    W.E. Courtney, IEEE Trans. 18, 476 (1970).Google Scholar
  28. 28.
    H.L. Pan, Z.B. Feng, J.X. Bi, and H.T. Wu, J. Alloys Compd. 651, 440 (2015).CrossRefGoogle Scholar
  29. 29.
    L.X. Li, S. Li, X.S. Lyu, H. Sun, and J. Ye, Mater. Lett. 163, 51 (2016).CrossRefGoogle Scholar
  30. 30.
    Y.J. Niu, M.T. Liu, M.F. Li, J.X. Bi, and H.T. Wu, J. Alloys Compd. 705, 399 (2017).CrossRefGoogle Scholar
  31. 31.
    B. Liu, Y.H. Huang, K.X. Song, L. Li, and X.M. Chen, J. Eur. Ceram. Soc. 38, 3833 (2018).CrossRefGoogle Scholar
  32. 32.
    Y.K. Yang, F.L. Liu, Y.W. Zhang, M.F. Li, F. Ling, and H.T. Wu, Ceram. Int. 44, 12238 (2018).CrossRefGoogle Scholar
  33. 33.
    W.S. Xia, L.Y. Zhang, Y. Wang, S.E. Jin, Y.P. Xu, Z.W. Zuo, and L.W. Shi, J. Mater. Sci.: Mater. Electron. 27, 11325 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations