Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1714–1723 | Cite as

Influence of Surface Modification and Dispersive Additives on Dielectric and Electrical Properties of BiFeO3/Poly(methyl methacrylate) Composite Films

  • Srikanta Moharana
  • Manoj Kumar Chopkar
  • Ram Naresh MahalingEmail author
Article
  • 9 Downloads

Abstract

Surface modification plays an important role to enhance the dielectric constant and minimize the dielectric loss. In this study, poly(methyl methacrylate) (PMMA) composites filled with 2-aminoethanesulfonic acid-modified bismuth ferrite (BiFeO3; BFO) have been prepared via solution casting technique. The surface morphology of the composites provides a better homogeneous dispersion of the particles in the polymer matrix and increases interface compatibility between modified BFO and PMMA matrix. The experimental results show that the composites have high dielectric constant (≈ 147), alternating current (AC) conductivity (1 × 10−5) and relatively low loss (< 1) at 100 Hz. The percolation phenomenon is well observed in the composite having less than 30 wt.% of BFO particles. Further, the composites produce passivation layers on the surface of modified BFO particles which might improve the morphology and promote the space charges, interface effects and dielectric properties. Our strategy is to provide a simple and efficient approach to fabricate high-performance dielectric composites for energy storage applications.

Graphical Abstract

Keywords

Poly(methyl methacrylate) dielectric properties morphology surface treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support obtained from the DST-FIST and UGC-DRS grant for the development of research work in the School of Chemistry, Sambalpur University, and project grant of DST Government of Odisha, India. One of the authors (SM) thanks UGC, New Delhi, for financial support through a BSR Research fellowship.

References

  1. 1.
    L.Y. Xie, X.Y. Huang, C. Wu, and P.K. Jiang, J. Mater. Chem. 21, 5897 (2011).Google Scholar
  2. 2.
    P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.J. Pan, S.R. Marder, J.Y. Li, J.P. Calame, and J.W. Perry, ACS Nano 3, 2581 (2009).Google Scholar
  3. 3.
    Z.M. Dang, Y.H. Lin, and C.W. Nan, Adv. Mater. 15, 1625 (2003).Google Scholar
  4. 4.
    J. Yuan, Z. Dang, S. Yao, J. Zha, T. Zhou, S. Li, and J. Bai, J. Mater. Chem. 20, 2441 (2010).Google Scholar
  5. 5.
    K.H. Lee, J. Kao, S.S. Parizi, G. Caruntu, and T. Xu, Nanoscale 6, 3526 (2014).Google Scholar
  6. 6.
    G. Sarasqueta, K.R. Choudhury, D.Y. Kim, and F. So, Appl. Phys. Lett. 93, 123305 (2008).Google Scholar
  7. 7.
    Z. Li, L.A. Fredin, P. Tewari, S.A. DiBenedetto, M.T. Lanagan, M.A. Ratner, and T.J. Marks, Chem. Mater. 22, 5154 (2010).Google Scholar
  8. 8.
    H.X. Tang, Y.R. Lin, C. Andrews, and H.A. Sodano, Nanotechnology 22, 015702 (2011).Google Scholar
  9. 9.
    Q. Zhang, J. Zhai, B. Shen, H. Zhang, and X. Yao, Mater. Res. Bull. 48, 973 (2013).Google Scholar
  10. 10.
    Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, and Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2000).Google Scholar
  11. 11.
    M. Arbatti, X.B. Shan, and Z.Y. Cheng, Adv. Mater. 19, 1369 (2007).Google Scholar
  12. 12.
    S. Wu, M.R. Lin, S.G. Lu, L. Zhu, and Q.M. Zhang, Appl. Phys. Lett. 99, 132901 (2011).Google Scholar
  13. 13.
    M. Rahimabady, S.T. Chen, K. Yao, F.E.H. Tay, and L. Lu, Appl. Phys. Lett. 99, 142901 (2011).Google Scholar
  14. 14.
    K. Yu, H. Wang, Y. Zhou, Y. Bai, and Y. Niu, J. Appl. Phys. 113, 034105 (2013).Google Scholar
  15. 15.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).Google Scholar
  16. 16.
    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, and J.F. Scott, Phys. Rev. B 77, 014110 (2008).Google Scholar
  17. 17.
    Y.H. Lin, Q. Jiang, Y. Wang, C.W. Nan, L. Chen, and J. Yu, Appl. Phys. Lett. 90, 172507 (2007).Google Scholar
  18. 18.
    J.Y. Li, L. Zhang, and S. Ducharme, Appl. Phys. Lett. 90, 132901 (2007).Google Scholar
  19. 19.
    R.N. Das, J.M. Lauffer, and V.R. Markovich, J. Mater. Chem. 18, 537 (2008).Google Scholar
  20. 20.
    W. Yan, Z.J. Han, B.T. Phung, and K. Ostrikov, ACS Appl. Mater. Interfaces 4, 2637 (2012).Google Scholar
  21. 21.
    Y. Deng, Y.J. Zhang, Y. Xiang, G.S. Wang, and H.B. Xu, J. Mater. Chem. 19, 2058 (2009).Google Scholar
  22. 22.
    S.A. Paniagua, Y. Kim, K. Henry, R. Kumar, J.W. Perry, and S.R. Marder, ACS Appl. Mater. Interfaces 6, 3477 (2014).Google Scholar
  23. 23.
    M.M. Kumar, V.R. Palkar, K. Srinivas, and S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).Google Scholar
  24. 24.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004).Google Scholar
  25. 25.
    E. Mostafavi and A. Ataie, Mater. Sci. Poland 34, 148 (2016).Google Scholar
  26. 26.
    B. Sannakki and Anita, Phys. Proc. 49, 15 (2013).Google Scholar
  27. 27.
    P. Thomas, R.S.E. Ravindran, and K.B.R. Varma, J. Therm. Anal. Calorim. 115, 1311 (2014).Google Scholar
  28. 28.
    Q. Yong, F. Nian, B. Liao, L. Huang, L. Wang, and H. Pang, RSC Adv. 5, 107413 (2015).Google Scholar
  29. 29.
    D.A. Kotadia and S.S. Soni, J. Mol. Catal. A: Chem. 44, 353 (2012).Google Scholar
  30. 30.
    D. Lee, M.G. Kim, S. Ryu, H.M. Jang, and S.G. Lee, Appl. Phys. Lett. 86, 222903 (2005).Google Scholar
  31. 31.
    I. Karimzadeh, M. Aghazadeh, M.R. Ganjali, P. Norouzi, T. Doroudi, and P.H. Kolivand, Mater. Lett. 189, 290 (2017).Google Scholar
  32. 32.
    D.H. Kuo, C.Y. Lin, Y.C. Jhou, J.Y. Cheng, and G.S. Liou, Polym. Compos. 34, 252 (2013).Google Scholar
  33. 33.
    R. Uotila, U. Hippi, S. Paavola, and J. Seppala, Polymer 46, 7923 (2005).Google Scholar
  34. 34.
    D. Hu, H. Ma, Y. Tanaka, L. Zhao, and Q. Feng, Chem. Mater. 27, 4983 (2015).Google Scholar
  35. 35.
    J. Mijovic and J. Wijaya, Polym. Compos. 11, 184 (1990).Google Scholar
  36. 36.
    A.R. Von Hippel, Dielectric and Waves (New York: Wiley, 1954).Google Scholar
  37. 37.
    X. Xiao, H. Yang, N. Xu, L. Hu, and Q. Zhang, RSC Adv. 5, 79342 (2015).Google Scholar
  38. 38.
    Y. Yang, H. Sun, D. Yin, Z. Lu, J. Wei, R. Xiong, J. Shi, Z. Wang, Z. Liu, and Q. Lei, J. Mater. Chem. A 3, 4916 (2015).Google Scholar
  39. 39.
    E. Jayamania, S. Hamdan, M.R. Rahman, and M.K.B. Bakria, Proc. Eng 97, 536 (2014).Google Scholar
  40. 40.
    S. Joseph and S. Thomas, J. Appl. Polym. Sci. 109, 256 (2008).Google Scholar
  41. 41.
    S.O. Kasap, Principles of Electronic Materials and Devices (New York: McGraw-Hill, 2006).Google Scholar
  42. 42.
    G. Peng, X. Zhao, Z. Zhan, S. Ci, Q. Wang, and Y. Liang, RSC Adv. 4, 16849 (2014).Google Scholar
  43. 43.
    S. Luo, Y. Shen, S. Yu, Y. Wan, W.H. Liao, R. Sun, and C.P. Wong, Energy Environ. Sci. 10, 137 (2017).Google Scholar
  44. 44.
    F.A. He, K.H. Lam, J.T. Fan, and L.W. Chan, Polym. Test. 32, 927 (2013).Google Scholar
  45. 45.
    H. Tang, Z. Ma, J. Zhong, J. Yang, R. Zhao, and X. Liu, Colloids Surf. A Physicochem. Eng. Asp. 384, 311 (2011).Google Scholar
  46. 46.
    Y. Niu, Y. Bai, K. Yu, Y. Wang, F. Xiang, and H. Wang, ACS Appl. Mater. Interfaces 7, 24168 (2015).Google Scholar
  47. 47.
    Q. Chen, B.J. Chu, X. Zhou, and Q.M. Zhang, Appl. Phys. Lett. 91, 062907 (2007).Google Scholar
  48. 48.
    J. Chon, S. Ye, K.J. Cha, S.C. Lee, Y.S. Koo, J.H. Jung, and Y.K. Kwon, Chem. Mater. 22, 5445 (2010).Google Scholar
  49. 49.
    K. Yu, Y. Niu, Y. Zhou, Y. Bai, and H. Wang, J. Am. Ceram. Soc. 96, 2519 (2013).Google Scholar
  50. 50.
    J. Li, J. Claude, L.E.N. Franco, S.I. Seok, and Q. Wang, Chem. Mater. 20, 6304 (2008).Google Scholar
  51. 51.
    S. Luo, S. Yu, R. Sun, and C.P. Wong, ACS Appl. Mater. Interfaces 6, 176 (2014).Google Scholar
  52. 52.
    N. Phromviyo, P. Thongbai, and S. Maensiri, Appl. Surf. Sci. 446, 236 (2018).Google Scholar
  53. 53.
    M.S. Tamboli, P.K. Palei, S.S. Patil, M.V. Kulkarni, N.N. Maldar, and B.B. Kale, Dalton Trans. 43, 13232 (2014).Google Scholar
  54. 54.
    E.A. Stefanescu, X. Tan, Z. Lin, N. Bowler, and M.R. Kessler, Polymer 52, 2016 (2011).Google Scholar
  55. 55.
    H.W. Choi, Y.W. Heo, J.H. Lee, J.J. Kim, H.Y. Lee, E.T. Park, and Y.K. Chung, Integr. Ferroelectr. 87, 85 (2007).Google Scholar
  56. 56.
    C. Gavade, N.L. Singh, D. Singh, S. Shah, A. Tripathi, and D.K. Avasthi, Integr. Ferroelectr. 117, 76 (2010).Google Scholar
  57. 57.
    N. Xu, L. Hu, Q. Zhang, X. Xiao, H. Yang, and E. Yu, ACS Appl. Mater. Interfaces 7, 27373 (2015).Google Scholar
  58. 58.
    G.C. Psarras, Compos. Part A 37, 1545 (2006).Google Scholar
  59. 59.
    A. Dey, S. De, A. De, and S.K. De, Nanotechnology 15, 1277 (2004).Google Scholar
  60. 60.
    S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, Macromolecules 36, 5187 (2003).Google Scholar
  61. 61.
    K. Ahmad, W. Pan, and S.L. Shi, Appl. Phys. Lett. 89, 133122 (2006).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Srikanta Moharana
    • 1
  • Manoj Kumar Chopkar
    • 3
  • Ram Naresh Mahaling
    • 1
    • 2
    Email author
  1. 1.Laboratory of Polymeric and Materials Chemistry, School of ChemistrySambalpur UniversityBurlaIndia
  2. 2.Nano Research CentreSambalpur UniversityBurlaIndia
  3. 3.Department of Metallurgical EngineeringNational Institute of Technology (NIT) RaipurRaipurIndia

Personalised recommendations