Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1446–1455 | Cite as

Critical Exponents and Magnetocaloric Effect in La0.7Sr0.3Mn1−xTixO3 (x = 0 and 0.05) Compounds

  • Le Viet BauEmail author
  • Nguyen Manh An
  • Nguyen Le Thi
  • Le Thi Giang
  • Tran Dang Thanh
  • Pham Thanh Phong
  • Seong-Cho Yu
5th International Conference of Asian Union of Magnetics Societies
  • 52 Downloads
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)

Abstract

The critical exponents and magnetocaloric properties of La0.7Sr0.3Mn1−xTixO3 with x = 0 and 0.05 have been explored via magnetic measurements. The magnetic data analyzed in the critical region by using modified Arrott plots, the Kouvel–Fisher method, and the scaling hypothesis reveal values for the critical parameters of β = 0.3165 and 0.3027, γ = 1.1121 and 1.203, and δ = 4.7556 and 4.833 for x = 0 and x = 0.05 respectively. These values are in agreement with the three-dimensional (3D) Ising model. The n values obtained from the law \( \Delta S_{\rm{max} } = a(\mu_{0} H)^{n} \) are 0.648 and 0.685. The maximum values of the magnetic entropy change are 1.65 J/kg K and 1.46 J/kg K under a magnetic field change of 10 kOe for x = 0.00 and 0.05, respectively. These results can be explained in the scenario of the short-range interaction and the phase separation as well as the diluted magnetic effect in manganites.

Keywords

Manganites critical exponents magnetocaloric effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02-2017.57.

References

  1. 1.
    M.B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).CrossRefGoogle Scholar
  2. 2.
    H.-J. Kim and S.-I. Yoo, J. Alloys Compd. 521, 30 (2012).CrossRefGoogle Scholar
  3. 3.
    Za Mohamed, E. Tka, J. Dhahri, and E.K. Hlil, J. Alloys Compd. 615, 290 (2014).CrossRefGoogle Scholar
  4. 4.
    L.V. Bau and N.M. An, J. Magn. Magn. Mater. 420, 275 (2016).CrossRefGoogle Scholar
  5. 5.
    R. M’nassri, N. Chniba-Boudjada, and A. Cheikhrouhou, J. Alloys Compd. 640, 183 (2015).CrossRefGoogle Scholar
  6. 6.
    T.D. Thanh, D.C. Linh, P.D.H. Yen, L.V. Bau, V.H. Ky, Z. Wang, H.-G. Piao, N.M. An, and S.-C. Yu, Phys. B 532, 166 (2018).CrossRefGoogle Scholar
  7. 7.
    D.C. Linh, N.T. Ha, N.H. Duc, L.H.G. Nam, L.V. Bau, N.M. An, S.-C. Yu, and T.D. Thanh, Phys. B 532, 155 (2018).CrossRefGoogle Scholar
  8. 8.
    C. Zener, Phys. Rev. 82, 403 (1951).CrossRefGoogle Scholar
  9. 9.
    A.J. Millis, P.B. Littlewood, and B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).CrossRefGoogle Scholar
  10. 10.
    A.J. Millis, Phys. Rev. B 53, 8434 (1996).CrossRefGoogle Scholar
  11. 11.
    L.V. Bau, N.V. Khiem, N.X. Phuc, L.V. Hong, D.N.H. Nam, and P. Nordblad, J. Magn. Magn. Mater. 322, 753 (2010).CrossRefGoogle Scholar
  12. 12.
    E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).CrossRefGoogle Scholar
  13. 13.
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (London: Oxford University Press, 1971).Google Scholar
  14. 14.
    M. Seeger, S.N. Kaul, H. Kronmüller, and R. Reisser, Phys. Rev. B 51, 12585 (1995).CrossRefGoogle Scholar
  15. 15.
    Y. Motome and N. Furulawa, J. Phys. Soc. Jpn. 69, 3785 (2000).CrossRefGoogle Scholar
  16. 16.
    Y. Motome and N. Furulawa, J. Phys. Soc. Jpn. 70, 1487 (2001).CrossRefGoogle Scholar
  17. 17.
    K. Ghosh, C.J. Lobb, R.L. Greene, S.G. Karabashev, D.A. Shulyatev, A.A. Arsenov, and Y. Mukovskii, Phys. Rev. Lett. 81, 4740 (1998).CrossRefGoogle Scholar
  18. 18.
    D. Ginting, D. Nanto, Y.D. Zhang, S.C. Yu, and T.L. Phan, Phys. B 421, 17 (2013).CrossRefGoogle Scholar
  19. 19.
    T.L. Phan, T.D. Thanh, and S.C. Yu, J. Alloys Compd. 615, S247 (2014).CrossRefGoogle Scholar
  20. 20.
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (London: Oxford University Press, 1971), pp. 1–21.Google Scholar
  21. 21.
    Ch.V. Mohan, M. Seeger, H. Kronmüller, P. Murugaraj, and J. Maier, J. Magn. Magn. Mater. 183, 348 (1998).CrossRefGoogle Scholar
  22. 22.
    R.S. Freitas, C. Haetinger, P. Pureur, J.A. Alonso, and L. Ghivelder, J. Magn. Magn. Mater. 226–230, 569 (2001).CrossRefGoogle Scholar
  23. 23.
    H.S. Shin, J.E. Lee, Y.S. Nam, H.L. Ju, and C.W. Park, Solid State Commun. 118, 377 (2001).CrossRefGoogle Scholar
  24. 24.
    M. Dudka, R. Folk, Yu Holovatch, and D. Ivaneiko, J. Magn. Magn. Mater. 256, 243 (2003).CrossRefGoogle Scholar
  25. 25.
    A.K. Pramanic and A. Banerjee, Phys. Rev. B 79, 214426 (2009).CrossRefGoogle Scholar
  26. 26.
    D.C. Linh, T.D. Thanh, L.H. Anh, V.D. Dao, H.G. Piao, and S.C. Yu, J. Alloys Compd. 725, 484 (2017).CrossRefGoogle Scholar
  27. 27.
    S.K. Banerjee, Phys. Lett. 12, 16 (1964).CrossRefGoogle Scholar
  28. 28.
    L.P. Kadano, W. Gotze, D. Hamblen, R. Hecht, E.A.S. Lewis, V.V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, and J. Kane, Rev. Mod. Phys. 39, 395 (1967).CrossRefGoogle Scholar
  29. 29.
    A. Arrott and J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967).CrossRefGoogle Scholar
  30. 30.
    M.E. Fisher, S.-K. Ma, and B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972).CrossRefGoogle Scholar
  31. 31.
    A. Arrott, Phys. Rev. 108, 1394 (1957).CrossRefGoogle Scholar
  32. 32.
    K.P. Belov, Magnetic Transitions (Boston: Boston Technical, 1965).Google Scholar
  33. 33.
    J. Fan, L. Ling, B. Hong, L. Zhang, L. Pi, and Y. Zhang, Phys. Rev. B 81, 144426 (2010).CrossRefGoogle Scholar
  34. 34.
    S. Mnefgui, N. Zaidi, A. Dhahri, E.K. Hlil, and J. Dhahri, J. Solid State Chem. 215, 193 (2014).CrossRefGoogle Scholar
  35. 35.
    Za Mohamed, E. Tka, J. Dhahri, and E.K. Hlil, J. Alloys Compd. 619, 520 (2015).CrossRefGoogle Scholar
  36. 36.
    A. Ezaami, I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, and A. Cheikhrouhou, J. Alloys Compd. 693, 658 (2017).CrossRefGoogle Scholar
  37. 37.
    J.S. Kouvel and M.E. Fisher, Phys. Rev. 136, 1626 (1964).CrossRefGoogle Scholar
  38. 38.
    B. Widom, J. Chem. Phys. 43, 3892 (1965).CrossRefGoogle Scholar
  39. 39.
    M. Földeàki, R. Chachine, and T.K. Bose, J. Appl. Phys. 77, 3528 (1995).CrossRefGoogle Scholar
  40. 40.
    J.S. Amaral and V.S. Amaral, J. Magn. Magn. Mater. 322, 1552 (2010).CrossRefGoogle Scholar
  41. 41.
    H. Oesterreicher and F.T. Parker, J. Appl. Phys. 55, 4334 (1984).CrossRefGoogle Scholar
  42. 42.
    V. Franco, J.S. Blazquez, and A. Conde, Appl. Phys. Lett. 89, 222512 (2006).CrossRefGoogle Scholar
  43. 43.
    A. Hankey and H.E. Stanley, Phys. Rev. B: Condens. Matter 6, 3515 (1972).CrossRefGoogle Scholar
  44. 44.
    A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, and J.M.D. Coey, J. Magn. Magn. Mater. 323, 2214 (2011).CrossRefGoogle Scholar
  45. 45.
    Q.Y. Dong, H.W. Zhang, J.R. Sun, B.G. Shen, and V. Franco, J. Appl. Phys. 103, 116101 (2008).CrossRefGoogle Scholar
  46. 46.
    L.V. Bau, N.V. Khiem, D.N.H. Nam, L.V. Hong, and N.X. Phuc, J. Korean Phys. Soc. 52, 1439 (2008).CrossRefGoogle Scholar
  47. 47.
    D.N.H. Nam, L.V. Bau, N.V. Khiem, N.V. Dai, L.V. Hong, N.X. Phuc, R.S. Newrock, and P. Nordblad, Phys. Rev. B73, 184430 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Le Viet Bau
    • 1
    • 2
    Email author
  • Nguyen Manh An
    • 3
  • Nguyen Le Thi
    • 3
  • Le Thi Giang
    • 3
  • Tran Dang Thanh
    • 4
  • Pham Thanh Phong
    • 1
    • 2
  • Seong-Cho Yu
    • 5
  1. 1.Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi MinhVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Hong Duc UniversityThanh HoaVietnam
  4. 4.Institute of Materials ScienceVASTHa NoiVietnam
  5. 5.Department of PhysicsChungbuk National UniversityCheongjuSouth Korea

Personalised recommendations