Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 1223–1234 | Cite as

Ellipsometric Investigation of Room Temperature Grown Highly-Oriented Anatase TiO2 Thin Films

  • Jyoti Jaiswal
  • Satyendra Mourya
  • Gaurav Malik
  • Ramesh ChandraEmail author
Article
  • 14 Downloads

Abstract

In this article, we have reported the structural optimization and optical properties of anatase titanium dioxide (TiO2) thin films grown by direct current magnetron sputtering on a glass substrate at room temperature (RT). The x-ray diffraction measurement revealed anatase phase of TiO2 with preferred orientation (101). The morphological, compositional and topographical properties of the samples are explored by scanning electron microscopy, x-ray photoelectron spectroscopy and atomic force microscopy, respectively. The optical properties such as refractive index n, extinction coefficient k and optical bandgap Eg are determined in the broad wavelength range of 246–1688 nm using variable angle spectroscopic ellipsometry accounting for the surface properties in the optical stack model. Moreover, the nonlinear refractive index n2 and the third-order nonlinear optical susceptibility χ(3) are determined using the Tichy–Ticha relation and Wemple–Didomenico (WDD) parameters. The ratio of the carrier concentration to the effective mass N/m* has also been determined. The current research on the optical and dispersion energy parameters of RT grown anatase TiO2 thin films is expected to have a significant impact on advanced flexible optical, optoelectronic, and photonic applications.

Keywords

TiO2 thin film sputtering spectroscopic ellipsometry optical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Malik, J. Jaiswal, S. Mourya, and R. Chandra, J. Appl. Phys. 122, 143105 (2017).CrossRefGoogle Scholar
  2. 2.
    B. Bharti, S. Kumar, H.-N. Lee, and R. Kumar, Sci. Rep. 6, 1 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Vargas, E.J. Rubio, A. Gutierrez, and C.V. Ramana, J. Appl. Phys. 115, 133511 (2014).CrossRefGoogle Scholar
  4. 4.
    S. Majumder, I. Mishra, U. Subudhi, and S. Varma, Appl. Phys. Lett. 103, 2 (2013).CrossRefGoogle Scholar
  5. 5.
    M.M. El-Nahass, M. Emam-Ismail, and M. El-Hagary, J. Alloys Compd. 646, 937 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Vyas, R. Tiwary, K. Shubham, and P. Chakrabarti, Superlattices Microstruct. 80, 215 (2015).CrossRefGoogle Scholar
  7. 7.
    P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, Curr. Appl. Phys. 9, 707 (2009).CrossRefGoogle Scholar
  8. 8.
    D. Pjević, T. Marinković, J. Savić, N. Bundaleski, M. Obradović, M. Milosavljević, and M. Kulik, Thin Solid Films 591, 224 (2015).CrossRefGoogle Scholar
  9. 9.
    V. Solanki, S. Majumder, I. Mishra, P. Dash, C. Singh, D. Kanjilal, and S. Varma, J. Appl. Phys. 115, 124306 (2014).CrossRefGoogle Scholar
  10. 10.
    C.-C. Ting, S.-Y. Chen, and D.-M. Liu, J. Appl. Phys. 88, 4628 (2000).CrossRefGoogle Scholar
  11. 11.
    M.-I. Baraton, Recent Pat. Nanotechnol. 6, 10 (2012).CrossRefGoogle Scholar
  12. 12.
    T.N. Van, Y.K. Lee, J. Lee, and J.Y. Park, Langmuir 29, 3054 (2013).CrossRefGoogle Scholar
  13. 13.
    S.H. Kang, M.S. Kang, H.S. Kim, J.Y. Kim, Y.H. Chung, W.H. Smyrl, and Y.E. Sung, J. Power Sources 184, 331 (2008).CrossRefGoogle Scholar
  14. 14.
    J. Bai and B. Zhou, Chem. Rev. 114, 10131 (2014).CrossRefGoogle Scholar
  15. 15.
    S.Y. Lee and S.J. Park, J. Ind. Eng. Chem. 19, 1761 (2013).CrossRefGoogle Scholar
  16. 16.
    G. Helsch and J. Deubener, Sol. Energy 86, 831 (2012).CrossRefGoogle Scholar
  17. 17.
    B. Liu and E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009).CrossRefGoogle Scholar
  18. 18.
    T. Izumi, T. Teraji, and T. Ito, J. Cryst. Growth 299, 349 (2007).CrossRefGoogle Scholar
  19. 19.
    P. Singh and D. Kaur, Phys. B Condens. Matter 405, 1258 (2010).CrossRefGoogle Scholar
  20. 20.
    A. Karuppasamy and A. Subrahmanyam, J. Appl. Phys. 101, 064318 (2007).CrossRefGoogle Scholar
  21. 21.
    D. Pjević, M. Obradović, T. Marinković, A. Grce, M. Milosavljević, R. Grieseler, T. Kups, M. Wilke, and P. Schaaf, Phys. B 463, 20 (2015).CrossRefGoogle Scholar
  22. 22.
    S. Murugesan, P. Kuppusami, N. Parvathavarthini, and E. Mohandas, Surf. Coat. Technol. 201, 7713 (2007).CrossRefGoogle Scholar
  23. 23.
    M.J. Miller and J. Wang, Vacuum 120, 155 (2015).CrossRefGoogle Scholar
  24. 24.
    Z.-J. Xu, F. Zhang, R.-J. Zhang, X. Yu, D.-X. Zhang, Z.-Y. Wang, Y.-X. Zheng, S.-Y. Wang, H.-B. Zhao, and L.-Y. Chen, Appl. Phys. A 113, 557 (2013).CrossRefGoogle Scholar
  25. 25.
    Y. Bouachiba, A. Bouabellou, F. Hanini, F. Kermiche, A. Taabouche, and K. Boukheddaden, Mater. Sci. 32, 1 (2014).Google Scholar
  26. 26.
    D. Bhattacharyya, N.K. Sahoo, S. Thakur, and N.C. Das, Thin Solid Films 360, 96 (2000).CrossRefGoogle Scholar
  27. 27.
    G.E. Jellison, L.A. Boatner, J.D. Budai, B.S. Jeong, and D.P. Norton, J. Appl. Phys. 93, 9537 (2003).CrossRefGoogle Scholar
  28. 28.
    H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (Chichester: Wiley, 2007).CrossRefGoogle Scholar
  29. 29.
    S. Mourya, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, J. Electron. Mater. 47, 5259 (2018).CrossRefGoogle Scholar
  30. 30.
    J. Jaiswal, A. Sanger, A. Kumar, S. Mourya, S. Chauhan, R. Daipuriya, M. Singh, and R. Chandra, Adv. Mater. Lett. 7, 485 (2016).CrossRefGoogle Scholar
  31. 31.
    J. Jaiswal, S. Mourya, G. Malik, S. Chauhan, R. Daipuriya, M. Singh, and R. Chandra, JOM 69, 2383 (2017).CrossRefGoogle Scholar
  32. 32.
    K. Kamala Bharathi, N.R. Kalidindi, and C.V. Ramana, J. Appl. Phys. 108, 083529 (2010).CrossRefGoogle Scholar
  33. 33.
    S. Mourya, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, J. Appl. Phys. 123, 023109 (2018).CrossRefGoogle Scholar
  34. 34.
    B.D. Cullity, Elements of X-Ray Diffraction, 1st ed. (MA: Addison-Wesley, 1956).Google Scholar
  35. 35.
    J. Jaiswal, S. Mourya, G. Malik, and R. Chandra, J. Opt. Soc. Am. A 35, 740 (2018).CrossRefGoogle Scholar
  36. 36.
    P. Singh and D. Kaur, J. Appl. Phys. 103, 043507 (2008).CrossRefGoogle Scholar
  37. 37.
    E.G. Sheikin, Thin Solid Films 574, 52 (2015).CrossRefGoogle Scholar
  38. 38.
    S.S. Lam Mui Li, A. Manie, F.L.S. Mani, and A. Alias, J. Teknol. 7, 45 (2015).Google Scholar
  39. 39.
    J. Jaiswal, S. Mourya, G. Malik, and R. Chandra, JOM 70, 2179 (2018).CrossRefGoogle Scholar
  40. 40.
    J. Jaiswal, S. Mourya, G. Malik, S. Chauhan, A. Sanger, R. Daipuriya, M. Singh, and R. Chandra, Appl. Opt. 55, 8368 (2016).CrossRefGoogle Scholar
  41. 41.
    J.A. Woollam, B. Johs, C.M. Herzinger, J. Hilfiker, R. Synowicki, and C.L. Bungay, in Critical Reviews of Optical Science and Technology (SPIE, Bellingham, WA, Denver, CO, 1999), pp. 3–28.Google Scholar
  42. 42.
    G.E. Jellison, Thin Solid Films 234, 416 (1993).CrossRefGoogle Scholar
  43. 43.
    J.L. Wang, Y.Q. Gao, Z.M. Huang, X.J. Meng, S.Z. Yuan, J. Yang, J.L. Sun, and J.H. Chu, Ferroelectrics 405, 120 (2010).CrossRefGoogle Scholar
  44. 44.
    B. Johs, J.A. Woollam, C.M. Herzinger, J. Hilfiker, R. Synowicki, and C.L. Bungay, in Critical Reviews of Optical Science and Technology (SPIE, Bellingham, WA, Denver, CO, 1999), pp. 29–58.Google Scholar
  45. 45.
    D.E. Aspnes, Thin Solid Films 571, 334 (2014).CrossRefGoogle Scholar
  46. 46.
    L. Yan and J.A. Woollam, J. Appl. Phys. 92, 4386 (2002).CrossRefGoogle Scholar
  47. 47.
    A. Sanger, A. Kumar, A. Kumar, J. Jaiswal, and R. Chandra, Sens. Actuators B 236, 16 (2016).CrossRefGoogle Scholar
  48. 48.
    J.N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S.M. Smith, J.H. Baker, and H.G. Tompkins, Thin Solid Films 516, 7979 (2008).CrossRefGoogle Scholar
  49. 49.
    S.H. Wemple and M. Didomenico, Phys. Rev. B 3, 1338 (1971).CrossRefGoogle Scholar
  50. 50.
    K. Tanaka, Thin Solid Films 66, 271 (1980).CrossRefGoogle Scholar
  51. 51.
    V. Dimitrov and S. Sakka, J. Appl. Phys. 79, 1741 (1996).CrossRefGoogle Scholar
  52. 52.
    I. Sharma, S.K. Tripathi, and P.B. Barman, J. Appl. Phys. 110, 043108 (2011).CrossRefGoogle Scholar
  53. 53.
    H. Tichá, J. Schwarz, L. Tichý, and R. Mertens, J. Optoelectron. Adv. Mater. 6, 747 (2004).Google Scholar
  54. 54.
    E. Shahriari, W.M. Mat Yunus, K. Naghavi, and Z.A. Talib, Opt. Commun. 283, 1929 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Thin Film Laboratory, Institute Instrumentation CentreIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations