Journal of Electronic Materials

, Volume 48, Issue 3, pp 1574–1581 | Cite as

Improving Microwave Absorbing Property of Flaky Ce2Co17 Alloys by Ni Content and Carbonyl Iron Powder

  • Yu He
  • Shunkang PanEmail author
  • Lichun Cheng
  • Jialiang Luo
  • Jingjing Yu


Flaky microwave absorbing materials based on Ce2Co17 with different addition of Ni content were fabricated successfully using the method of vacuum arc melting and high energy ball milling. The phase structure, grain morphology, electromagnetic parameters and reflection loss (RL) were probed by the corresponding equipment and computational simulation software. The RL values of Ce2Co17−xNix alloys that exceeded − 10 dB were observed in the frequency range of 6.16–10.24 GHz with a thickness of only 1.8 mm. Besides, via adjusting the thickness to only 1.6 mm, the minimum RL of Ce2Co16.6Ni0.4 powder was as high as − 44.29 dB at 9.6 GHz with a broad bandwidth of 3.04 GHz. Furthermore, the different weight ratio for Ce2Co16.6Ni0.4/carbonyl iron powder composite was also studied. The microwave absorption peak of composite shifts to a higher frequency region with the increasing weight ratio of carbonyl iron powder. More importantly, the effective bandwidth of the composite with the Ce2Co16.6Ni0.4/carbonyl iron powder weight ratio of 50:50 can be obtained at about 4.64 GHz, manifesting that composite can be provided with excellent microwave absorption bandwidth by adjusting the weight ratio of carbonyl iron powder.


Ce2Co17−xNix alloys reflection loss microwave absorbing property carbonyl iron powder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Project supported by the National Natural Science Foundation of China (51361007), 2017 director fund of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (GXKL06170107) and Innovation Project of GUET Graduate Education (2018YJCX87).


  1. 1.
    J. Sun, H.L. Xu, Y. Shen, H. Bi, W.F. Liang, and R.B. Yang, J. Alloys Compd. 548, 18 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Li, G.Z. Xie, P.C. Ji, J. Qu, J.W. Chen, and J. Chen, J. Magn. Magn. Mater. 443, 85 (2017).CrossRefGoogle Scholar
  3. 3.
    C. Liu, Y. Yuan, J.T. Jiang, Y.X. Gong, and L. Zhen, J. Magn. Magn. Mater. 395, 152 (2015).CrossRefGoogle Scholar
  4. 4.
    W.C. Li, J.J. Lv, X. Zhou, J.W. Zheng, Y. Ying, L. Qiao, J. Yu, and S.L. Che, J. Magn. Magn. Mater. 426, 504 (2017).CrossRefGoogle Scholar
  5. 5.
    A. Xia, S. Ren, J. Lin, Y. Ma, C. Xu, J. Li, C. Jin, and X. Liu, J. Alloys Compd. 653, 108 (2015).CrossRefGoogle Scholar
  6. 6.
    I.S. Maksymov and M. Kostylev, J. Appl. Phys. 116, 173905 (2014).CrossRefGoogle Scholar
  7. 7.
    K.S. Nakayama, T. Chiba, S. Tsukimoto, Y. Yokoyama, T. Shima, and S. Yabukami, Appl. Phys. Lett. 105, 202403 (2014).CrossRefGoogle Scholar
  8. 8.
    J. Zhou, Z.H. Zhou, and C. Xiong, J. Electron. Mater. 47, 1244 (2018).CrossRefGoogle Scholar
  9. 9.
    Y. Lin, P. Kang, H.B. Yang, and M. Liu, J. Alloys Compd. 644, 390 (2015).CrossRefGoogle Scholar
  10. 10.
    Y. Liu, X. Liu, and R. Li, RSC Adv. 5, 8713 (2014).Google Scholar
  11. 11.
    M.A. Ahmed, N. Okasha, and R.M. Kershi, J. Magn. Magn. Mater. 320, 1146 (2008).CrossRefGoogle Scholar
  12. 12.
    X.G. Huang, J. Chen, L.X. Wang, and Q.T. Zhang, Rare Met. 30, 44 (2011).CrossRefGoogle Scholar
  13. 13.
    Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, and H. Salamati, J. Magn. Magn. Mater. 397, 101 (2016).CrossRefGoogle Scholar
  14. 14.
    Z.Q. Qiao, S.K. Pan, J.L. Xiong, L.C. Cheng, and Q.R. Yao, J. Mater. Sci.: Mater. Electron. 27, 7487 (2016).Google Scholar
  15. 15.
    Z.Q. Cui and Y.C. Qin, Metallography and Heat Treatment, 2nd ed. (Beijing: China Machine Press, 2007), pp. 37–52.Google Scholar
  16. 16.
    X. Wu, H. Luo, and Y. Wan, Mater. Lett. 92, 139 (2013).CrossRefGoogle Scholar
  17. 17.
    X.Y. Fang, M.S. Cao, X.L. Shi, and Z.L. Hou, J. Appl. Phys. 107, 054304 (2010).CrossRefGoogle Scholar
  18. 18.
    W.Q. Zhang, S.W. Bie, H.C. Chen, Y. Lu, and J.J. Jiang, J. Magn. Magn. Mater. 358–359, 1 (2014).CrossRefGoogle Scholar
  19. 19.
    C.K. Zhang, J.J. Jiang, S.W. Bie, L. Zhang, L. Miao, and X.X. Xu, J. Alloys Compd. 527, 71 (2012).CrossRefGoogle Scholar
  20. 20.
    S.b. Liao, Ferromagnetic, 2nd ed. (Beijing: Science Press, 1988), pp. 3–88.Google Scholar
  21. 21.
    L. Zhen, Y.X. Gong, J.T. Jiang, and W.Z. Shao, J. Appl. Phys. 104, 034312 (2017).CrossRefGoogle Scholar
  22. 22.
    J.R. Ma, X.X. Wang, W.Q. Cao, H. Chen, H.J. Yang, J. Yuan, and M.S. Cao, Chem. Eng. J. 339, 487 (2018).CrossRefGoogle Scholar
  23. 23.
    Y.Z. Yang, Z.T. Kang, and D. Chen, J. Mater. Sci.: Mater. Electron. 25, 4246 (2014).Google Scholar
  24. 24.
    B.S. Zhang, Y. Feng, J. Xiang, Y. Yang, and H.X. Lu, IEEE Trans. Magn. 42, 1778 (2006).CrossRefGoogle Scholar
  25. 25.
    X.Y. Fang, M.S. Cao, and X.L. Shi, J. Appl. Phys. 107, 054304 (2010).CrossRefGoogle Scholar
  26. 26.
    R.C. Hu, G.G. Tan, X.S. Gu, S.W. Chen, C.G. Wu, Q.K. Man, C.T. Chang, X.M. Wang, R.W. Li, S.L. Che, and L.Q. Jiang, J. Alloys Compd. 730, 255 (2018).CrossRefGoogle Scholar
  27. 27.
    X.X. Wang, T. Ma, J.C. Shu, and M.S. Cao, Chem. Eng. J. 332, 321 (2018).CrossRefGoogle Scholar
  28. 28.
    Y. Liu, Y.Y. Li, F. Luo, X.L. Su, J. Xu, J.H. Wang, X.H. He, and Y.M. Shi, J. Mater. Sci.: Mater. Electron. 28, 6622 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yu He
    • 1
  • Shunkang Pan
    • 1
    Email author
  • Lichun Cheng
    • 1
    • 2
  • Jialiang Luo
    • 1
  • Jingjing Yu
    • 1
  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.School of Materials and EngineeringCentral South UniversityChangshaChina

Personalised recommendations