Journal of Electronic Materials

, Volume 48, Issue 3, pp 1582–1589 | Cite as

First Principles Study of Structural Stability, Elastic Properties, and Electronic Structures of Y-Doped Mg2Si

  • Wenxin Wang
  • Yuyan RenEmail author
  • Yingmin Li


The occupancy, structural stability, elastic properties, and electronic structure of Y-doped Mg2Si were calculated by the first principles method based on density functional theory. Calculation of the formation heats and mechanical stability show that Mg2Si, and Mg7Si4Y can be stable, while Mg8Si3Y and Mg8Si4Y cannot exist stably in the system. The heats of formation and cohesive energies calculations show that the structural stability and alloying ability of Mg7Si4Y is better than that of Mg2Si. The bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (ν) show that Mg2Si is a brittle phase and Mg7Si4Y is a ductile phase. Doping with Y can improve the ductility of Mg2Si. The density of states, population analysis, and electron density difference show that the ionicity of Mg7Si4Y is stronger than that of Mg8Si4, and the Y-Si ionic bonds formed by Mg7Si4Y increase the structural stability. The band structure analysis shows that the Fermi level of Mg7Si4Y is in the conduction band, the electrons in the valence band can easily transition to the conduction band, and that the conductivity of Mg7Si4Y is stronger than Mg2Si.


Mg2Si first principles elastic properties electronic structures mechanical properties doping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This project is supported by Science and Technology Research Project, Department of Education, Liaoning Province (LGD2016017). The authors are also grateful to reviewers and Poduval, who provided comments that substantially improved the manuscript.


  1. 1.
    T. Kato, Y. Sago, and H. Fujiwara, J. Appl. Phys. 110, 84 (2011).Google Scholar
  2. 2.
    H. Udono, Y. Yamanaka, M. Uchikoshi, and M. Isshiki, J. Phys. Chem. Solids 74, 311 (2013).CrossRefGoogle Scholar
  3. 3.
    D. Fang, Q.Q. Xiao, Y.F. Liao, Z.B. Yuan, S.L. Wang, and H.X. Wu, Mater. Rev. 31, 9 (2017).Google Scholar
  4. 4.
    N.G. Galkin, K.N. Galkin, I.M. Chernev, R. Fajgar, H. Stuchlikova, J. Stuchlik, and Z. Remes, JJAP Conf. Proc. 3, 011104 (2015).Google Scholar
  5. 5.
    G.Z. Bai, Z. Liu, J.X. Lin, Z.F. Yu, Y.M. Hu, and C.E. Wen, Mater. Design 90, 424 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Hekmat-Ardakan and F. Ajersch, J. Mater. Process. Tech. 210, 767 (2010).CrossRefGoogle Scholar
  7. 7.
    N.A. Nordin, S. Farahany, T.A.A. Bakar, E. Hamzah, and A. Ourdjin, J. Alloy. Compd. 650, 821 (2015).CrossRefGoogle Scholar
  8. 8.
    N.V. Morozova, S.V. Ovsyannikov, I.V. Korobeinikov, A.E. Karkin, K. Takarabe, Y. Mori, S. Nakamura, and V.V. Shchennikov, J. Appl. Phys. 115, 213705 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Fiameni, S. Boldrini, S. Battiston, F. Agresti, A. Famengo, S. Barison, and M. Fabrizio, AIP Conf. Proc. 1449, 191 (2012).CrossRefGoogle Scholar
  10. 10.
    J.I. Tani and H. Kido, Intermetallics 15, 1202 (2007).CrossRefGoogle Scholar
  11. 11.
    X.P. Han and G.S. Shao, J. Appl. Phys. 112, 013715 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Muthiah, J. Pulikkotil, A.K. Srivastava, A. Kumar, B.D. Pathak, A. Dhar, and R.C. Budhani, Appl. Phys. Lett. 103, 053901 (2013).CrossRefGoogle Scholar
  13. 13.
    J.Y. Jung and I.H. Kim, J. Electron. Mater. 40, 1144 (2011).CrossRefGoogle Scholar
  14. 14.
    J.B. Zhao, Z.X. Liu, J. Reid, K. Takarabe, T. Iida, B. Wang, U. Yoshiya, and J.S. Tse, J. Mater. Chem. A 3, 19774 (2015).CrossRefGoogle Scholar
  15. 15.
    X.D. Tang, G.W. Wang, Y. Zheng, Y.M. Zhang, K.L. Peng, L.J. Guo, S.X. Wang, M. Zeng, J.Y. Dai, G.Y. Wang, and X.Y. Zhou, Scr. Mater. 115, 52 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Tada, Y. Isoda, H. Udono, H. Fujiu, S. Kumagai, and Y. Shinohara, J. Electron. Mater. 43, 1580 (2014).CrossRefGoogle Scholar
  17. 17.
    X. Han and G. Shao, J. Mater. Chem. C 3, 530 (2014).CrossRefGoogle Scholar
  18. 18.
    H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont, and H. Scherrer, J. Alloys Comp. 509, 6503 (2011).CrossRefGoogle Scholar
  19. 19.
    D.C. Chang, I. Markina, and A. Vasil’Ev, J. Geom. Phys. 986, 61 (2011).Google Scholar
  20. 20.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).Google Scholar
  21. 21.
    D. Shi, B. Wen, R. Melnik, S. Yao, and T. Li, J. Solid State Chem. 182, 2664 (2009).CrossRefGoogle Scholar
  22. 22.
    A. Jain, G. Hautier, C.J. Moore, S.P. Ong, C.C. Fischer, T. Mueller, K.A. Persson, and G. Ceder, Comp. Mater. Sci. 50, 2295 (2011).CrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  24. 24.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
  25. 25.
    D.J. Chadi, Phys. B: Condens. Matter 16, 5188 (1977).Google Scholar
  26. 26.
    B.G. Pfrommer, M. Côté, S.G. Louie, and M.L. Cohen, J. Comp. Phys. 131, 233 (1997).CrossRefGoogle Scholar
  27. 27.
    Y. Imai, Y. Mori, S. Nakamura, and K.I. Takarabe, J. Alloy. Compd. 549, 175 (2013).CrossRefGoogle Scholar
  28. 28.
    R. Yu, G.D. Li, X. Guo, and P.C. Zhai, Comp. Mater. Sci. 149, 49 (2018).CrossRefGoogle Scholar
  29. 29.
    N. Hirayama, T. Iida, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada, J. Mater. Res. 30, 2564 (2015).CrossRefGoogle Scholar
  30. 30.
    H. Wang, W. Chu, and H. Jin, Comp. Mater. Sci. 60, 224 (2012).CrossRefGoogle Scholar
  31. 31.
    P. Jund, R. Viennois, C. Colinet, G. Hug, M. Fèvre, and J.C. Tédenac, J. Phys.: Condens. Matter 25, 035403 (2013).Google Scholar
  32. 32.
    O. Madelung and L. B€ornstein, J. Phys. Chem. B 163, 432 (1983).Google Scholar
  33. 33.
    H. Zhang, Y. Wang, S.L. Shang, C. Ravi, C. Wolverton, L.O. Chen, and Z.K. Liu, Calphad 34, 20 (2010).CrossRefGoogle Scholar
  34. 34.
    H. Zhao, Y.H. Zhao, X.M. Yang, H.M. Sui, H. Hou, and P.D. Han, Rare Metal Mater. Eng. 44, 638 (2015).Google Scholar
  35. 35.
    C.L. Fu, X.D. Wang, and Y.Y. Ye, Intermetallics 7, 179 (1999).CrossRefGoogle Scholar
  36. 36.
    H. Zhang, S.L. Shang, J.E. Saal, A. Saengdeejing, Y. Wang, L.Q. Chen, and Z.K. Liu, Intermetallics 17, 878 (2009).CrossRefGoogle Scholar
  37. 37.
    Y.Y. Ren, T.Y. Liu, and Y.M. Li, Sci. Sinica 46, 084611 (2016).Google Scholar
  38. 38.
    Z.W. Huang, Y.H. Zhao, H. Hou, and P.D. Han, Phys. B: Condens. Matter 407, 1075 (2012).CrossRefGoogle Scholar
  39. 39.
    Q. Liu and R. Zhang, J. Alloy. Compd. 508, 616 (2010).CrossRefGoogle Scholar
  40. 40.
    H.L. Chen, L. Lin, P.L. Mao, Z. Liu, and J. Magnes, Alloy 3, 197 (2015).CrossRefGoogle Scholar
  41. 41.
    C.H. Li, J.L. Hoe, and P. Wu, J. Phys. Chem. Solids 64, 201 (2003).CrossRefGoogle Scholar
  42. 42.
    X.M. Yang, H. Hou, Y.H. Zhao, L. Yang, and P.D. Han, J. Wuhan Univ. Technol.-Mater Sci. Ed. 29, 1049 (2014).CrossRefGoogle Scholar
  43. 43.
    S.H. Jhi, J. Ihm, S.G. Louie, and M.L. Cohen, Nature 132, 399 (1999).Google Scholar
  44. 44.
    W.Y. Yu, N. Wang, X.B. Xiao, B.Y. Tang, L.M. Peng, and W.J. Ding, Solid State Sci. 1400, 11 (2009).Google Scholar
  45. 45.
    M. Mattesini, R. Ahuja, and B. Johansson, Phys. Rev. B 18410, 868 (2003).Google Scholar
  46. 46.
    P. Boulet, M.J. Verstraete, J.P. Crocombette, M. Briki, and M.C. Record, Comp. Mater. Sci. 50, 847 (2011).CrossRefGoogle Scholar
  47. 47.
    W.H. Fan, Q.S. Meng, L.Q. Wang, B.X. Li, and R.X. Chen, J. Mater. Sci. Eng. 28, 275 (2010).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringShenyang University of TechnologyShenyangPeople’s Republic of China

Personalised recommendations