Journal of Electronic Materials

, Volume 48, Issue 2, pp 1207–1222 | Cite as

No-Clean Solder Flux Chemistry and Temperature Effects on Humidity-Related Reliability of Electronics

  • Kamila PiotrowskaEmail author
  • Magdalena Grzelak
  • Rajan Ambat


The use of no-clean flux technology for the wave soldering process of a printed circuit board assembly (PCBA) influences the humidity-related robustness of the electronic devices due to the ionic residues remaining on the PCBA surface after soldering. This paper investigates the effect of various no-clean solder flux chemistries on the formation of a water layer on the PCBA surface studied as a function of climatic conditions relevant for the electronics industry. The activating part of the commercial flux formulations used for the investigations was based on single weak organic acid (WOA) and WOA mixtures. The hygroscopic nature of flux residues, reflecting their ability to uptake moisture and lead to water film build-up, was investigated using the gravimetric moisture sorption test and AC electrochemical impedance. The effect of flux composition and ambient climatic conditions on the corrosion reliability was studied using DC leakage current measurements upon varying potential bias, humidity, and temperature levels. The study shows that solder flux residues containing a mixture of WOA activators in their formulation facilitate the formation of water layer on the PCBA surface at lower humidity levels, compared to the residues composed of a single activator, and absorb a higher amount of moisture. Corrosion occurrence is accelerated by the presence of highly hygroscopic residues of WOA mixtures, compared to significantly less corrosive contaminants comprised of single activator. Increasing ambient temperature enhances moisture interaction with flux residues and changes its deliquescent behaviour, leading to the formation of a thicker water layer and severe ion-induced corrosion at lower humidity levels.


Solder flux quality humidity temperature corrosion electronics reliability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The research reported here was conducted as part of the CELCORR/CreCon consortium ( and supported by the Innovation Fund Denmark through the IN SPE project. The authors would like to acknowledge the industrial partners for funding support, their help and commitment received during the program run. Magdalena Grzelak is Adam Mickiewicz University Foundation scholarship holder in 2018/2019 academic year.


  1. 1.
    C.J. Tautscher, Contamination Effects on Electronic Products (New York: CRC Press, 1991).Google Scholar
  2. 2.
    U. Rathinavelu, Ph.D. Thesis (2011).Google Scholar
  3. 3.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, Solder. Surf. Mt. Technol. 27, 4 (2015).CrossRefGoogle Scholar
  4. 4.
    R. Michalkiewicz and S.M.T. Surf, Mt. Technol. Mag. 29, 1 (2014).Google Scholar
  5. 5.
    K. Piotrowska, R. Ud Din, F.B. Grumsen, M.S. Jellesen, and R. Ambat, J. Electron. Mater. 47, 7 (2018).CrossRefGoogle Scholar
  6. 6.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, IEEE Trans. Device Mater. Reliab. 14, 1 (2014).CrossRefGoogle Scholar
  7. 7.
    D. Pauls, Circuit World 27, 1 (2001).CrossRefGoogle Scholar
  8. 8.
    L.D. Angelo, V. Verdingovas, and L. Ferrero, in Proceedings of the European Corrosion Congress EUROCORR (2016).Google Scholar
  9. 9.
    F. Cirolia and C. Finan, in Apec 2001: Sixteenth Annual Ieee Applied Power Electronics Conference and Exposition, vol 1–2 (2001), pp. 238–242.Google Scholar
  10. 10.
    J.R. White, IBM J. Res. Dev. 37, 2 (1993).CrossRefGoogle Scholar
  11. 11.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, J. Electron. Mater. 44, 4 (2015).CrossRefGoogle Scholar
  12. 12.
    K. Piotrowska, M.S. Jellesen, and R. Ambat, Solder. Surf. Mt. Technol. 29, 3 (2017).CrossRefGoogle Scholar
  13. 13.
    J.H. Lau, Solder Joint Reliability: Theory and Applications (Berlin: Springer, 1991).CrossRefGoogle Scholar
  14. 14.
    P. Biocca, in Proceedings of SMTA International (2001), pp. 72–75.Google Scholar
  15. 15.
    S. Zhan, M.H. Azarian, and M.G. Pecht, in Proceedings2005 International Symposium on Microelectronics, Imaps 2005 (2005), pp. 367–375.Google Scholar
  16. 16.
    R. Ambat, M.S. Jellesen, D. Minzari, U. Rathinavelu, M.A.K. Johnsen, P. Westermann, and P. Møller, in Proceedings of the European Corrosion Congress EUROCORR (2009).Google Scholar
  17. 17.
    K. Piotrowska, H. Conseil, M.S. Jellesen, and R. Ambat, in Proceedings of the European Corrosion Congress EUROCORR (2014), paper no. 7495.Google Scholar
  18. 18.
    V. Verdingovas, M.S. Jellesen, R. Rizzo, H. Conseil, and R. Ambat, in Proceedings of the European Corrosion Congress EUROCORR (2013).Google Scholar
  19. 19.
    K. Piotrowska, V. Verdingovas, and R. Ambat, J. Mater. Sci. Mater. Electron. 29, 20 (2018).CrossRefGoogle Scholar
  20. 20.
    P.-E. Tegehall, in ELFNET B. Fail. Mech. Test. Methods, Qual. Issues Lead-Free Solder Interconnects (Springer, London, 2011), pp. 283–296.Google Scholar
  21. 21.
    C. Dominkovics and G. Harsanyi, in 29th International Spring Seminar on Electronics Technology: Nano Technologies for Electronics Packaging (2007), pp. 206–210.Google Scholar
  22. 22.
    U. Rathinavelu, M.S. Jellesen, P. Møller, R. Ambat, and I.E.E.E. Trans, Compon. Packag. Manuf. Technol. 2, 4 (2012).CrossRefGoogle Scholar
  23. 23.
    K.S. Hansen, M.S. Jellesen, P. Møller, P.J.S. Westermann, and R. Ambat, in Annual Reliability and Maintainability Symposium, 2009. Rams 2009 (2009), p. 4914727.Google Scholar
  24. 24.
    M.S. Jellesen, M. Dutta, V. Verdingovas, and R. Ambat, in Imaps Nordic Annual Conference Proceedings (2012), pp. 104–113.Google Scholar
  25. 25.
    R. Ambat, in Imaps Nordic Annual Conference Proceedings 2012 (2012), pp. 1–18.Google Scholar
  26. 26.
    L. Zou and C. Hunt, Solder. Surf. Mt. Technol. 11, 2 (1999).Google Scholar
  27. 27.
    J.E. Sohn and U. Ray, Circuit World 21, 4 (1995).CrossRefGoogle Scholar
  28. 28.
    J.A. Jachim, G.B. Freeman, and L.J. Turbini, IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 4 (1997).CrossRefGoogle Scholar
  29. 29.
    L.J. Turbini, J.A. Jachim, G.B. Freeman, and J.F. Lane, in Proceedings of 1992 13th IEEE/CHMT International Electronic Manufacturing Symposium (1992), pp. 80–84.Google Scholar
  30. 30.
    K.G. Schmitt-Thomas and C. Schmidt, Solder. Surf. Mt. Technol. 3, 18 (1994).Google Scholar
  31. 31.
    H.E. Gottlieb, V. Kotlyar, and A. Nudelman, J. Org. Chem. 62, 7512 (1997).CrossRefGoogle Scholar
  32. 32.
    J.T. Carstensen, Pharmaceutical Principles of Solid Dosage Forms (Lancaster: Technomic Pub, 1993).Google Scholar
  33. 33.
    L. Ma, B. Sood, and M. Pecht, IEEE Trans. Device Mater. Reliab. 11, 1 (2011).CrossRefGoogle Scholar
  34. 34.
    T. Mitra, G. Sailakshmi, A. Gnanamani, and A.B. Mandal, Mater. Res. 16, 4 (2013).CrossRefGoogle Scholar
  35. 35.
    R.M. Silverstein, F.X. Webster and D.J. Kiemle The Spectrometric Identification of Organic Compounds, 7th ed. (New York, NY: John Wiley & Sons, 2005).Google Scholar
  36. 36.
    L.J. Mauer and L.S. Taylor, Pharm. Dev. Technol. 15, 6 (2010).CrossRefGoogle Scholar
  37. 37.
    G. Zografi and B. Hancock, in Topics in Pharmaceutical Sciences, eds. by D.J.A. Crommelin, K.K. Midha, T. Nagai (Medpharm Scientific Publishers, Stuttgart, 1993), pp. 405–419.Google Scholar
  38. 38.
    M. Kuwata, W. Shao, R. Lebouteiller, and S.T. Martin, Atmos. Chem. Phys. 13, 10 (2013).CrossRefGoogle Scholar
  39. 39.
    M.C. Allan, M.Sc. Thesis (2014).Google Scholar
  40. 40.
    L.J. Mauer and M. Allan, Manuf. Confect. 95, 73 (2015).Google Scholar
  41. 41.
    K. Kwok, L.J. Mauer, and L.S. Taylor, J. Agric. Food Chem. 58, 22 (2010).CrossRefGoogle Scholar
  42. 42.
    A.K. Salameh, L.J. Mauer, and L.S. Taylor, J. Food Sci. 71, 1 (2006).CrossRefGoogle Scholar
  43. 43.
    M. Tencer, in 44th Electronic Components and Technology Conference Proceedings (1994), pp. 196–209.Google Scholar
  44. 44.
    L.J. Mauer and L.S. Taylor, Annu. Rev. Food Sci. Technol. 1, 1 (2010).CrossRefGoogle Scholar
  45. 45.
    S.T. Martin, Chem. Rev. 100, 9 (2000).CrossRefGoogle Scholar
  46. 46.
    J.G. Kapsalis, Water Activity: Theory and Applications to Food (New York: Marcel Dekker Inc, 1987), pp. 173–213.Google Scholar
  47. 47.
    L. D’Angelo, V. Verdingovas, L. Ferrero, E. Bolzacchini, and R. Ambat, IEEE Tans. Device Mater. Reliab. 17, 4 (2017).CrossRefGoogle Scholar
  48. 48.
    L. Treuel, S. Schulze, T. Leisner, and R. Zellner, Faraday Discuss. 137, 265 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Centre for Electronic Corrosion, Materials and Surface EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Faculty of ChemistryAdam Mickiewicz University in PoznańPoznanPoland

Personalised recommendations