Advertisement

Journal of Electronic Materials

, Volume 48, Issue 4, pp 1889–1895 | Cite as

Doping Optimization for the Power Factor of Bipolar Thermoelectric Materials

  • Samuel FosterEmail author
  • Neophytos Neophytou
Open Access
Topical Collection: International Conference on Thermoelectrics 2018
  • 68 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018

Abstract

Bipolar carrier transport is often a limiting factor in the thermoelectric efficiency of narrow bandgap materials at high temperatures due to the reduction in the Seebeck coefficient and the introduction of an additional term to the thermal conductivity. Using the Boltzmann transport formalism and a two-band model, we simulate transport through bipolar systems and calculate their thermoelectric transport properties: the electrical conductivity, the Seebeck coefficient and the thermoelectric power factor. We present an investigation into the doping optimisation of such materials, showing the detrimental impact that rising temperatures have if the doping (and the Fermi level) is not optimised for each operating temperature. We also show that the doping levels for optimized power factors at a given operating temperature differ in bipolar systems compared to unipolar ones. We show finally that at 600 K, in a bipolar material with bandgap approximately that of Bi2Te3, the optimal doping required can reside between 10% and 30% larger than that required for an optimal unipolar material depending on the electronic scattering details of the material.

Keywords

Thermoelectrics thermoelectric power factor bipolar transport effects Seebeck coefficient optimized doping Boltzmann transport theory 

Notes

Acknowledgments

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No. 678763).

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

  1. 1.
    G. Prashun, S. Vladan, and E.S. Toberer, Nat. Rev. Mater. 2, 17053 (2017).CrossRefGoogle Scholar
  2. 2.
    L.-D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 6, 3346 (2013).CrossRefGoogle Scholar
  3. 3.
    H. Goldsmid, Materials 7, 2577 (2014).CrossRefGoogle Scholar
  4. 4.
    L.-D. Zhao, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 7, 251 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Lundstrom, Notes on Bipolar Thermal Conductivity (2017). https://nanohub.org/groups/ece656_f17/File:Notes_on_Bipolar_Thermal_Conductivity.pdf. Accessed 11 June 2018.
  6. 6.
    M. Thesberg, H. Kosina, and N. Neophytou, Phys. Rev. B 95, 125206 (2017).CrossRefGoogle Scholar
  7. 7.
    G. Snyder and E. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, Q. Song, X. Wang, J. Sun, Q. Zhu, K. Dahal, X. Lin, F. Cao, J. Zhou, S. Chen, G. Chen, J. Mao, and Z. Ren, Energy Environ. Sci. 11, 933 (2018).CrossRefGoogle Scholar
  9. 9.
    A.F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling (London: Infosearch Ltd., 1957).Google Scholar
  10. 10.
    P.G. Burke, B.M. Curtin, J.E. Bowers, and A.C. Gossard, Nano Energy 12, 735 (2015).CrossRefGoogle Scholar
  11. 11.
    J.-H. Bahk and A. Shakouri, Phy. Rev. B 93, 165209 (2016).CrossRefGoogle Scholar
  12. 12.
    H.-S. Kim, K.H. Lee, J. Yoo, W.H. Shin, J.W. Roh, J.-Y. Hwang, S.W. Kim, and S.I. Kim, J. Alloys Compd 741, 869 (2018).CrossRefGoogle Scholar
  13. 13.
    L. Zhang, P. Xiao, L. Shi, G. Henkelman, J.B. Goodenough, and J. Zhou, J. Appl. Phys. 117, 155103 (2015).CrossRefGoogle Scholar
  14. 14.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  15. 15.
    G. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).CrossRefGoogle Scholar
  16. 16.
    T.J. Scheidemantel, C.A. Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).CrossRefGoogle Scholar
  17. 17.
    M. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University Press, 2000).CrossRefGoogle Scholar
  18. 18.
    S. Foster, M. Thesberg, and N. Neophytou, Phys. Rev. B 96, 195425 (2017).CrossRefGoogle Scholar
  19. 19.
    N. Neophytou and M. Thesberg, J. Comput. Electron. 15, 16 (2016).CrossRefGoogle Scholar
  20. 20.
    C. Jeong, R. Kim, and M. Lundstrom, J. Appl. Phys. 111, 113707 (2012).CrossRefGoogle Scholar
  21. 21.
    G. Tan, L.-D. Zhao, and M. Kanatzidis, Chem. Rev. 116, 12123 (2016).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations