Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 1252–1257 | Cite as

A Subwavelength Microstrip Resonator Based on Metamaterials

  • T. H. FengEmail author
  • H. P. Han
Article
  • 37 Downloads

Abstract

A metamaterial-based subwavelength microstrip resonator with high quality factor and simple fabrication process was proposed. For the experimental result, a quality factor of about 70 was achieved when the length of the resonator was about one third of the wavelength. Firstly, the mu-negative metamaterial (MNM) and the epsilon-negative metamaterial (ENM) were implemented by loading only chip capacitors or only chip inductors onto the microstrip. The implementation process is simpler in comparison to the traditional implementation method of the MNM and the ENM based on the microstrip. Then, the transmission characteristics of the heterostructure constructed of the MNM and the ENM fabricated through the simple method were investigated and the results showed that a subwavelength microstrip resonator could be built by the MNM–ENM heterostructure. Moreover, the quality-factor enhancement of the subwavelength microstrip resonator based on the MNM–ENM heterostructure was also explored. The results showed that the quality factor could be notably boosted and increased by about 15 times for the experimental result of the sample owing to more intensive confinement of the electromagnetic field when the electromagnetically induced transparency-like metamaterial was introduced at the interface of the MNM–ENM heterostructure.

Keywords

Metamaterials resonator subwavelength quality factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. U1504110), the Aid Project for the Leading Young Teachers in Henan Provincial Institutions of Higher Education (Grant No. 2014GGJS-117), the Natural Science Foundation of Henan Province of China (Grant Nos. 182300410199, 162300410237) and the Development Project for Science and Technology of Henan Province of China (Grant Nos. 182102210509, 172102210470).

References

  1. 1.
    L. Zhou, H. Li, Y. Qin, Z. Wei, and C.T. Chan, Appl. Phys. Lett. 86, 101101 (2005).CrossRefGoogle Scholar
  2. 2.
    A. Ourir, A. Lustrac, and J. Lourtioz, Appl. Phys. Lett. 88, 084103 (2006).CrossRefGoogle Scholar
  3. 3.
    H. Li, J. Hao, L. Zhou, Z. Wei, L. Gong, H. Chen, and C.T. Chan, Appl. Phys. Lett. 89, 104101 (2006).CrossRefGoogle Scholar
  4. 4.
    N. Engheta, IEEE Antennas Wirel. Propag. Lett. 1, 10 (2002).CrossRefGoogle Scholar
  5. 5.
    M. Caiazzo, S. Maci, and N. Engheta, IEEE Antennas Wirel. Propag. Lett. 3, 261 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Liao, J. Xu, F. Wan, W. Wang, and Y. Gong, IEEE Antennas Wirel. Propag. Lett. 8, 80 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Wan, P. Gu, W. Liu, Z. Chen, and Z. Wang, Appl. Phys. Lett. 110, 031103 (2017).CrossRefGoogle Scholar
  8. 8.
    S. Kwon, IEEE Photon. J. 5, 4800107 (2013).CrossRefGoogle Scholar
  9. 9.
    K.H. Seol, K. Lee, and S.H. Song, J. Appl. Phys. 117, 173104 (2015).CrossRefGoogle Scholar
  10. 10.
    E.A. Brui, A.V. Shchelokova, M. Zubkov, I.V. Melchakova, S.B. Glybovski, and A.P. Slobozhanyuk, Phys. Status Solidi A 215, 1700788 (2018).CrossRefGoogle Scholar
  11. 11.
    A. Alù and N. Engheta, IEEE Trans. Antennas Propag. 51, 2558 (2003).CrossRefGoogle Scholar
  12. 12.
    T. Fujishige, C. Caloz, and T. Itoh, Microw. Opt. Technol. Lett. 46, 476 (2005).CrossRefGoogle Scholar
  13. 13.
    T. Feng, Y. Li, H. Jiang, Y. Sun, L. He, H. Li, Y. Zhang, Y. Shi, and H. Chen, Phys. Rev. E 79, 026601 (2009).CrossRefGoogle Scholar
  14. 14.
    T. Feng, Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, Prog. Electromagn. Res. 120, 35 (2011).CrossRefGoogle Scholar
  15. 15.
    R. Zeng, Y. Yang, and S. Zhu, Phys. Rev. A 87, 063823 (2013).CrossRefGoogle Scholar
  16. 16.
    T. Feng, H. Han, L. Wang, and F. Yang, Prog. Electromagn. Res. Lett. 71, 91 (2017).CrossRefGoogle Scholar
  17. 17.
    B. Pan, Y. Li, M.M. Tentzeris, and J. Papapolymerou, IEEE Microw. Wirel. Compon. Lett. 17, 571 (2007).CrossRefGoogle Scholar
  18. 18.
    Y. Li, X. Tao, H. Chen, and W.Y. Tam, J. Opt. Soc. Am. A 28, 314 (2011).CrossRefGoogle Scholar
  19. 19.
    P. Dhakal, G. Ciovati, P. Kneisel, and G.R. Myneni, IEEE Trans. Appl. Supercond. 25, 3500104 (2015).Google Scholar
  20. 20.
    M.V. Rybin, K.L. Koshelev, Z.F. Sadrieva, K.B. Samusev, A.A. Bogdanov, M.F. Limonov, and Y.S. Kivshar, Phys. Rev. Lett. 119, 243901 (2017).CrossRefGoogle Scholar
  21. 21.
    J. Xie, X. Zhu, X. Zang, Q. Cheng, L. Chen, and Y. Zhu, Opt. Mater. Express 8, 50 (2018).CrossRefGoogle Scholar
  22. 22.
    A. Garbic and G.V. Eleftheriades, J. Appl. Phys. 92, 5930 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Electrical EngineeringXuchang UniversityXuchangPeople’s Republic of China

Personalised recommendations