Catalytic Growth of 1D ZnO Nanoneedles on Glass Substrates Through Vapor Transport

  • Forat H. AlsultanyEmail author
  • Hasan Sh. Majdi
  • Husnen R. Abd
  • Z. Hassan
  • Naser M. Ahmed


In this study, one-dimensional (1D) zinc oxide (ZnO) nanoneedles are successfully fabricated on a Ag catalyst-coated glass substrate through simple physical vapor deposition via thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas at a low growth temperature of 450°C. The growth rate and diameter of ZnO nanoneedles increase as a function of varying silver (Ag) film thicknesses and argon (Ar) flow rates. Detailed structural investigations confirm that the synthesized nanoneedles have high crystallinity with a hexagonal wurtzite structure, and they preferentially grow along the c-axis orientation. This approach provides a simple and cost-effective method for the synthesis and controlled growth of 1D nanostructures, which can be useful in solid-state devices and various optoelectronic applications.


1D ZnO structural properties x-ray diffraction UV emission enhancement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Kar, M. Kumar, J.H. Choi, S.N. Das, S.Y. Choi, and J.M. Myoung, Solid State Commun. 149, 1337 (2009).CrossRefGoogle Scholar
  2. 2.
    F.H. Alsultany, Z. Hassan, and N.M. Ahmed, Mater. Res. Bull. 79, 63 (2016).CrossRefGoogle Scholar
  3. 3.
    W. Lee, M.-C. Jeong, and J.-M. Myoung, Acta Mater. 52, 3949 (2004).CrossRefGoogle Scholar
  4. 4.
    T. Chen, G.Z. Xing, Z. Zhang, H.Y. Chen, and T. Wu, Nanotechnology 19, 435711 (2008).CrossRefGoogle Scholar
  5. 5.
    N.K. Hassan, M.R. Hashim, and M. Bououdina, Ceram. Int. 39, 7439 (2013).CrossRefGoogle Scholar
  6. 6.
    P.K. Giri, S. Dhara, and R. Chakraborty, Mater. Chem. Phys. 122, 18 (2010).CrossRefGoogle Scholar
  7. 7.
    A.S. Dahiya, C. Opoku, R.A. Sporea, B. Sarvankumar, G. Poulin-Vittrant, F. Cayrel, N. Camara, and D. Alquier, Sci. Rep. 6, 19232 (2016).CrossRefGoogle Scholar
  8. 8.
    F.H. Alsultany, Z. Hassan, and N.M. Ahmed, Ceram. Int. 42, 13144 (2016).CrossRefGoogle Scholar
  9. 9.
    S.Y. Li, C.Y. Lee, and T.Y. Tseng, J. Cryst. Growth 247, 357 (2003).CrossRefGoogle Scholar
  10. 10.
    S.C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, and C.J. Lee, Chem. Phys. Lett. 363, 134 (2002).CrossRefGoogle Scholar
  11. 11.
    J. Shao, W. Dong, D. Li, R. Tao, Z. Deng, T. Wang, G. Meng, S. Zhou, and X. Fang, Thin Solid Films 518, 5288 (2010).CrossRefGoogle Scholar
  12. 12.
    C.-Y. Chen, J.-H. Huang, K.-Y. Lai, Y.-J. Jen, C.-P. Liu, and J.-H. He, Opt. Express 20, 2015 (2012).CrossRefGoogle Scholar
  13. 13.
    R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
  14. 14.
    D.-H. Kuo and B.-J. Chang, J. Nanomater. 2011, 1 (2011).Google Scholar
  15. 15.
    M.S. Al-Ruqeishi and T. Mohiuddin, Arab. J. Chem. (2015).
  16. 16.
    F.H. Alsultany, Z. Hassan, and N.M. Ahmed, Superlattices Microstruct. 92, 68 (2016).CrossRefGoogle Scholar
  17. 17.
    E.A. Stach, P.J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, and P. Yang, Nano Lett. 3, 867 (2003).CrossRefGoogle Scholar
  18. 18.
    J. Grabowska (Ph.D. thesis, Dublin City University, 2007).
  19. 19.
    X. San, G. Wang, B. Liang, Y. Song, S. Gao, J. Zhang, and F. Meng, J. Alloys Compd. 622, 73 (2015).CrossRefGoogle Scholar
  20. 20.
    B.-H. Kong, D.C. Kim, and H.-K. Cho, Phys. B Condens. Matter 376, 726 (2006).CrossRefGoogle Scholar
  21. 21.
    Zinc Oxide Nanostructures, J. Phys. Chem. B 109, 19758 (2005).CrossRefGoogle Scholar
  22. 22.
    S.Y. Li, P. Lin, C.Y. Lee, and T.Y. Tseng, J. Mater. Sci.: Mater. Electron. 15, 505 (2004).Google Scholar
  23. 23.
    T.Y. Kim, S.H. Lee, K.S. Nahm, J.Y. Kim, H.W. Shim, and E.K. Suh, in Presented at the Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 2003 (unpublished)Google Scholar
  24. 24.
    H.I. Abdulgafour, Z. Hassan, F.K. Yam, and C.W. Chin, Thin Solid Films 540, 212 (2013).CrossRefGoogle Scholar
  25. 25.
    F.H. Alsultany, Z. Hassan, and N.M. Ahmed, Opt. Mater. 60, 30 (2016).CrossRefGoogle Scholar
  26. 26.
    Y. Wang, J. Liu, X. Wu, and B. Yang, Appl. Surf. Sci. 308, 341 (2014).CrossRefGoogle Scholar
  27. 27.
    P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014).CrossRefGoogle Scholar
  28. 28.
    T. Ghosh, M. Dutta, and D. Basak, Mater. Res. Bull. 46, 1039 (2011).CrossRefGoogle Scholar
  29. 29.
    H. Zhou, J. Mei, P. Gui, P. Tao, Z. Song, H. Wang, and G.-J. Fang, Mater. Sci. Semicond. Process. 38, 67 (2015).CrossRefGoogle Scholar
  30. 30.
    K.I. Mohammed, F.M. Jasim, and M.I. Azawe, Curr. Appl. Phys. 14, 1318 (2014).CrossRefGoogle Scholar
  31. 31.
    Z.W. Zhao, B.K. Tay, J.S. Chen, J.F. Hu, X.W. Sun, and S.T. Tan, Appl. Phys. Lett. 87, 251912 (2005).CrossRefGoogle Scholar
  32. 32.
    Y.-R. Li, C.-Y. Wan, C.-T. Chang, W.-L. Tsai, Y.-C. Huang, K.-Y. Wang, P.-Y. Yang, and H.-C. Cheng, Vacuum 118, 48 (2015).CrossRefGoogle Scholar
  33. 33.
    S. Benramache and B. Benhaoua, Superlattices Microstruct. 52, 1062 (2012).CrossRefGoogle Scholar
  34. 34.
    J.I. Pankove, Optical Processes in Semiconductors (New York: University of Colorader Boulder, 1975), p. 34.Google Scholar
  35. 35.
    F.H. Alsultany, Z. Hassan, and N.M. Ahmed, Ceram. Int. 11, 13144 (2016).Google Scholar
  36. 36.
    N.K. Hassan, M.R. Hashim, and N.K. Allam, Sens. Actuators A Phys. 192, 124 (2013).CrossRefGoogle Scholar
  37. 37.
    A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, and J.Z. Zhang, Adv. Funct. Mater. 19, 1849 (2009).CrossRefGoogle Scholar
  38. 38.
    J. Huh, G.-T. Kim, J.S. Lee, and S. Kim, Appl. Phys. Lett. 93, 042111 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Forat H. Alsultany
    • 1
    Email author
  • Hasan Sh. Majdi
    • 1
  • Husnen R. Abd
    • 2
  • Z. Hassan
    • 3
  • Naser M. Ahmed
    • 2
  1. 1.Department of Medical PhysicsAl-Mustaqbal University CollegeHillahIraq
  2. 2.School of PhysicsUniversiti Sains Malaysia (USM)GelugorMalaysia
  3. 3.Institute of Nano-Optoelectronics Research and Technology (INOR)Universiti Sains Malaysia (USM)GelugorMalaysia

Personalised recommendations