Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 1159–1163 | Cite as

Thermoelectric Properties of Zn4Sb3 Composites with Incomplete Reaction

  • Jianping Lin
  • Lingzhi Ma
  • Zhonghua Zheng
  • Yilong Chen
  • Zhichao Cui
  • Jiping WangEmail author
  • Guanjun Qiao
Article
  • 30 Downloads

Abstract

Zn4Sb3 composites have been prepared by plasma-activated sintering (PAS) using mixtures of Zn and Sb. Small amounts of ZnSb and Zn were found as impurity phases. Scanning electron microscopy revealed that metallic Zn was present along the particle boundaries. A sudden decline in the thermal conductivity was found at ∼ 600 K. However, this phenomenon disappeared after the application of heat treatment for 4 h. Further studies confirmed that this decline in the thermal conductivity is related to the reaction between ZnSb and Zn. The dynamic change in the structure during the reaction reduced the thermal conductivity and improved the thermoelectric performance of the Zn4Sb3 composites.

Keywords

Thermoelectric PAS thermal conductivity Zn4Sb3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant No. 51602272), Natural Science Foundation of Fujian Province (Grant No. 2016J01745), and State Key Laboratory for Mechanical Behavior of Materials.

References

  1. 1.
    L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).CrossRefGoogle Scholar
  2. 2.
    C. Chang, W. Minghui, D. He, Y. Pei, W. Chao-Feng, W. Xuefeng, Yu Hulei, F. Zhu, K. Wang, and Y. Chen, Science 360, 778 (2018).CrossRefGoogle Scholar
  3. 3.
    J.S. Rhyee, K. Ahn, K.H. Lee, H.S. Ji, and J.H. Shim, Adv. Mater. 23, 2191 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).CrossRefGoogle Scholar
  5. 5.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  6. 6.
    Y. Liu, L.D. Zhao, Y. Zhu, Y. Liu, F. Li, M. Yu, D.B. Liu, W. Xu, Y.H. Lin, and C.W. Nan, Adv. Energy Mater. 6, 1502423 (2016).CrossRefGoogle Scholar
  7. 7.
    B. Gahtori, S. Bathula, K. Tyagi, M. Jayasimhadri, A.K. Srivastava, S. Singh, R.C. Budhani, and A. Dhar, Nano Energy 13, 36 (2015).CrossRefGoogle Scholar
  8. 8.
    P. Qiu, M.T. Agne, Y. Liu, Y. Zhu, H. Chen, T. Mao, J. Yang, W. Zhang, S.M. Haile, W.G. Zeier, J. Janek, C. Uher, X. Shi, L. Chen, and G.J. Snyder, Nat. Commun. 9, 2910 (2018).CrossRefGoogle Scholar
  9. 9.
    H.W. Mayer, I. Mikhail, and K. Schubert, J. Less-Common Metals 59, 43 (1978).CrossRefGoogle Scholar
  10. 10.
    J. Nylen, M. Andersson, S. Lidin, and U. Haussermann, J. Am. Chem. Soc. 126, 16306 (2004).CrossRefGoogle Scholar
  11. 11.
    Y. Mozharivskyj, Y. Janssen, J.L. Harringa, A. Kracher, A.O. Tsokol, and G.J. Miller, Chem. Mater. 18, 822 (2006).CrossRefGoogle Scholar
  12. 12.
    A.S. Mikhaylushkin, J. Nylen, and U. Haussermann, Chem. Eur. J. 11, 4912 (2005).CrossRefGoogle Scholar
  13. 13.
    Y. Mozharivskyj, A.O. Pecharsky, S. Bud’ko, and G.J. Miller, Chem. Mater. 16, 1580 (2004).CrossRefGoogle Scholar
  14. 14.
    G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).CrossRefGoogle Scholar
  15. 15.
    F. Cargnoni, E. Nishibori, P. Rabiller, L. Bertini, G.J. Snyder, M. Christensen, C. Gatti, and B.B. Iversen, Chem. Eur. J. 10, 3861 (2004).CrossRefGoogle Scholar
  16. 16.
    J. Lin, X. Li, G. Qiao, Z. Wang, J. Carrete, Y. Ren, L. Ma, Y. Fei, B. Yang, L. Lei, and J. Li, J. Am. Chem. Soc. 136, 1497 (2014).CrossRefGoogle Scholar
  17. 17.
    W. Schweika, R.P. Hermann, M. Prager, J. Persson, and V. Keppens, Phys. Rev. Lett. 99, 125501 (2007).CrossRefGoogle Scholar
  18. 18.
    J. Lin, G. Qiao, L. Ma, Y. Ren, B. Yang, Y. Fei, and L. Lei, Appl. Phys. Lett. 102, 163902 (2013).CrossRefGoogle Scholar
  19. 19.
    H. Yin, M. Christensen, N. Lock, and B.B. Iversen, Appl. Phys. Lett. 101, 043901 (2012).CrossRefGoogle Scholar
  20. 20.
    K. Haruno, Y. Atsushi, I. Tsutomu, and O. Haruhiko, Appl. Phys. Express 10, 095801 (2017).CrossRefGoogle Scholar
  21. 21.
    V. Izard, M.C. Record, and J.C. Tedenac, J. Alloys Compd. 345, 257 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and EngineeringXiamen University of TechnologyXiamenChina
  2. 2.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Information TechnologyConcord University College Fujian Normal UniversityFuzhouChina
  4. 4.School of Materials Science and EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations