Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 1243–1251 | Cite as

Electronic and Optical Properties of CsSnI3−yCly (y = 0, 1, 2, 3) Perovskites: a DFT Study

  • R. Padmavathy
  • A. Amudhavalli
  • M. Manikandan
  • R. Rajeswarapalanichamy
  • K. Iyakutti
  • A. K. Kushwaha
Article
  • 24 Downloads

Abstract

Halide perovskite-based solar cells are attractive due to their excellent power conversion efficiency and low cost. Sn-based halide perovskites CsSnI3−yCly (y = 0, 1, 2, 3) are investigated in this work using first-principles calculations based on density functional theory. The computed electronic structure profile reveals that these materials exhibit semiconducting behavior. The energy gap value of CsSnI3 is tuned by substituting Cl atom for iodine atom. As the pressure is increased, the energy gap value of these materials decreases, and a semiconductor to metallic transition is observed at high pressure. The optical properties of these Sn-based compounds, including the real and imaginary parts of the dielectric function, electron energy loss function, refractive index, and reflectivity, are computed. The dynamical stability of these perovskites is analyzed based on the phonon dispersion curve.

Keywords

First-principles calculations structural properties electronic structure optical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Support received from the college management is greatly acknowledged. Financial assistance from the UGC [No. F MRP-6831/16 (SERO/UGC)], India is duly acknowledged with gratitude.

References

  1. 1.
    S. Korbel, M.A.L. Marques, and S. Botti, J. Mater. Chem. C 4, 3157 (2016).CrossRefGoogle Scholar
  2. 2.
    Y. Ye, X. Run, X.H. Tao, H. Feng, X. Fei, and W.L. Jun, Chin. Phys. B 24, 116302 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Qian, B. Xu, and W. Tian, Org. Electron. 37, 61 (2016).CrossRefGoogle Scholar
  4. 4.
    C. Grote and R.F. Berger, J. Phys. Chem. C 119, 22832 (2015).CrossRefGoogle Scholar
  5. 5.
    L. Lang, J.H. Yang, H.R. Liu, H.J. Xiang, and X.G. Gong, Phys. Lett. A 378, 290 (2014).CrossRefGoogle Scholar
  6. 6.
    L.Y. Huang and W.R.L. Lambrecht, Phys. Rev. B 93, 195211 (2016).CrossRefGoogle Scholar
  7. 7.
    I. Khan, N. Shehzad, I. Ahmad, Z. Ali, and S.J. Asadabadi, Int. J. Mod. Phys. B 31, 1750148 (2017).CrossRefGoogle Scholar
  8. 8.
    S.F. Hoefler, G. Trimmel, and T. Rath, Monatsh. Chem. 148, 795 (2017).CrossRefGoogle Scholar
  9. 9.
    L.Y. Huang and W.R.L. Lambrecht, Phys. Rev. B. 88, 165203 (2013).CrossRefGoogle Scholar
  10. 10.
    K. Yamada, H. Kawaguchi, and T. Matsui, Bull. Chem. Soc. Jpn 63, 2521 (1990).CrossRefGoogle Scholar
  11. 11.
    K. Yamada, S. Funabiki, H. Horimoto, T. Matsui, T. Okuda, and S. Ichiba, Chem. Lett. 20, 801 (1991).CrossRefGoogle Scholar
  12. 12.
    L. Peedikakkandy and P. Bhargava, RSC Adv. 6, 19857 (2016).CrossRefGoogle Scholar
  13. 13.
    D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie, P.P. Boix, S. Mhaisalkar, and N. Mathews, J. Phys. Chem. C 119, 1763 (2015).CrossRefGoogle Scholar
  14. 14.
    Hayatullah, G. Murtaza, S. Muhammad, S. Naeem, M.N. Khalid, and A. Manzar, Acta Phys. Pol. A 124, 102 (2013).CrossRefGoogle Scholar
  15. 15.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  16. 16.
    G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).CrossRefGoogle Scholar
  17. 17.
    G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  18. 18.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  19. 19.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  20. 20.
    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
  21. 21.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  22. 22.
    O.K. Anderson, Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
  23. 23.
    S.Q. Wu, Z.F. Hou, and Z.Z. Zhu, Solid State Commun. 143, 425 (2007).CrossRefGoogle Scholar
  24. 24.
    H.A. Kramers, AttiCongr. Int. Fis (Transactions of Volta Centenary Congress) 2, 545 (1927).Google Scholar
  25. 25.
    R. De and L. Kronig, J. Opt. Soc. Am. 12, 547 (1926).CrossRefGoogle Scholar
  26. 26.
    A. Amudhavalli, R. Rajeswarapalanichamy, K. Iyakutti, and A.K. Kushwaha, Comput. Condens. Matter 14, 55 (2018).CrossRefGoogle Scholar
  27. 27.
    K.E. Babu, A. Veeraiah, D.T. Swamy, and V. Veeraiah, Mater. Sci. 30, 359 (2012).Google Scholar
  28. 28.
    A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).CrossRefGoogle Scholar
  29. 29.
    A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B 91, 094306 (2015).CrossRefGoogle Scholar
  30. 30.
    L. Chaput, A. Togo, I. Tanaka, and G. Hug, Phys. Rev. B 84, 094302 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • R. Padmavathy
    • 1
  • A. Amudhavalli
    • 1
  • M. Manikandan
    • 1
  • R. Rajeswarapalanichamy
    • 1
  • K. Iyakutti
    • 2
  • A. K. Kushwaha
    • 3
  1. 1.Department of PhysicsN.M.S.S.Vellaichamy Nadar CollegeMaduraiIndia
  2. 2.Department of PhysicsSRM Institute of Science and TechnologyChennaiIndia
  3. 3.Department of PhysicsK.N. Govt. P.G. CollegeGyanpur, BhadohiIndia

Personalised recommendations