Advertisement

Enhanced Perpendicular Exchange Bias in Co/Pd Antidot Arrays

  • T. N. Anh Nguyen
  • J. Fedotova
  • J. Kasiuk
  • W.-B. Wu
  • J. Przewoźnik
  • C. Kapusta
  • O. Kupreeva
  • S. Lazarouk
  • T. H. Thuy Trinh
  • K. Tung Do
  • H. Manh Do
  • D. Lam Vu
  • J. Åkerman
5th International Conference of Asian Union of Magnetics Societies
  • 6 Downloads
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)
  2. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)

Abstract

Magnetic nanostructures revealing the exchange bias (EB) effect have attracted much interest in recent years due to their promising applications in spintronics, magnetic sensing and recording devices with various functionalities. In this paper, we report on the perpendicular exchange bias effect in a multilayered thin film composed of [Co/Pd] ferromagnetic multilayers exchange-coupled to an antiferromagnetic IrMn. The film was deposited on a porous anodized titania template. Influences of the films’ surface morphology as well as the order of layers deposited on the EB effect were studied. The enhancements of the EB field HEB (up to 30%) and the coercive field HC (two times) were achieved in the nanoporous films relative to their continuous film counterparts, which could be attributed to the specific morphology of the porous surfaces.

Keywords

Multilayered Co/Pd thin films porous TiO2 templates perpendicular magnetic anisotropy exchange bias 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the National Foundation for Science and Technology Development of Vietnam under Project 103.99-2015.83 and the Korea Institute of Science and Technology (KIST) via KIST School Partnership project 2017, from the State Research Program ‘‘Physical materials science, new materials and technologies’’ (task 2.44), the Belarusian Republic Foundation for Basic Research (project no. F17U-006) and from the World Federation of Scientists.

References

  1. 1.
    C. Schulze, M. Faustini, J. Lee, H. Schletter, H. Schletter, M.U. Lutz, P. Krone, M. Gass, K. Sader, A.L. Bleloch, M. Hietschold, M. Fuger, D. Suess, J. Fidler, U. Wolff, V. Neu, D. Grosso, D. Makarov, and M. Albrecht, Nanotechnology 21, 5701 (2010).CrossRefGoogle Scholar
  2. 2.
    J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, and M.D. Baró, Phys. Rep. 422, 65 (2005).CrossRefGoogle Scholar
  3. 3.
    S.K. Lazarouk, D.A. Sasinovich, O.V. Kupreeva, T.I. Orehovskaia, N. Rochdi, F. Arnaud d′Avitaya, and V.E. Borisenko, Thin Solid Films 526, 41 (2012).CrossRefGoogle Scholar
  4. 4.
    T.N. Anh Nguyen, J. Fedotova, J. Kasiuk, V. Bayev, O. Kupreeva, S. Lazarouk, D.H. Manh, D.L. Vu, S. Chung, J. Åkerman, V. Altynov, and A. Maximenko, Appl. Surf. Sci. 427, 649 (2018).CrossRefGoogle Scholar
  5. 5.
    Y.F. Liu, J.W. Cai, and S.L. He, J. Phys. D Appl. Phys. 42, 115002 (2009).CrossRefGoogle Scholar
  6. 6.
    H. Meng, V.B. Naik, and R. Sbiaay, Phys. Status Solidi A 210, 391 (2013).CrossRefGoogle Scholar
  7. 7.
    J. Rodriguez-Carvajal, Phys. B 192, 55 (1993).CrossRefGoogle Scholar
  8. 8.
    Y. Matsuo, J. Phys. Soc. Jpn. 32, 972 (1972).CrossRefGoogle Scholar
  9. 9.
    A.A. Maximenko, J.V. Kasiuk, J.A. Fedotova, M. Marszalek, Y. Zabila, and J. Chojenka, Phys. Sol. State 59, 1762 (2017).CrossRefGoogle Scholar
  10. 10.
    L. Szunyogh, B. Lazarovits, L. Udvardi, J. Jackson, and U. Nowak, Phys. Rev. B 79, 020403(R) (2009).CrossRefGoogle Scholar
  11. 11.
    P.K. Manna and S.M. Yusuf, Phys. Rep. 535, 61 (2014).CrossRefGoogle Scholar
  12. 12.
    G. Malinowski, M. Hehn, S. Robert, O. Lenoble, and A. Schuhl, Phys. Rev. B 68, 184404 (2003).CrossRefGoogle Scholar
  13. 13.
    S.V. Dijken, J. Moritz, and J.M. Coey, J. Appl. Phys. 97, 063907 (2005).CrossRefGoogle Scholar
  14. 14.
    J. Kanak, T. Stobiecki, S. van Dijken, and I.E.E.E. Trans, Magn. 44, 238 (2008).CrossRefGoogle Scholar
  15. 15.
    V. Rodionova, I. Dzhun, K. Chichay, S. Shevyrtalov, and N. Chechenin, Solid State Phenom. 233, 427 (2015).CrossRefGoogle Scholar
  16. 16.
    V. Alexandrakis, D. Niarchos, M. Wolff, and I. Panagiotopoulos, J. Appl. Phys. 105, 3901 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • T. N. Anh Nguyen
    • 1
    • 2
    • 3
  • J. Fedotova
    • 4
    • 5
  • J. Kasiuk
    • 4
  • W.-B. Wu
    • 4
  • J. Przewoźnik
    • 5
  • C. Kapusta
    • 5
  • O. Kupreeva
    • 6
  • S. Lazarouk
    • 6
  • T. H. Thuy Trinh
    • 1
  • K. Tung Do
    • 1
  • H. Manh Do
    • 1
  • D. Lam Vu
    • 1
  • J. Åkerman
    • 2
    • 3
  1. 1.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Material Physics DepartmentRoyal Institute of TechnologyKistaSweden
  3. 3.Department of PhysicsUniversity of GothenburgGothenburgSweden
  4. 4.Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  5. 5.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakowPoland
  6. 6.Belarusian State University of Informatics and RadioelectronicsMinskBelarus

Personalised recommendations