Journal of Electronic Materials

, Volume 48, Issue 2, pp 1133–1138 | Cite as

Influence of Bi Substitution on the Microstructure and Dielectric Properties of Gd3Fe5O12 Ceramics

  • Athira Rajan
  • Sikha L. Das
  • K. S. Sibi
  • G. SubodhEmail author


The exponential growth in microwave communications in recent years demands innovations and high yield microwave materials. Rare earth iron garnets are well known for their remarkable performance in microwave devices owing to their superior features. In this work we investigate the microstructure and dielectric properties of Bismuth substituted Gd3Fe5O12 ceramics prepared by the conventional solid state reaction route. The variation of lattice parameter, microstructure, permittivity, quality factor and temperature coefficient of resonant frequency (τf) of Gadolinium Iron Garnet (GIG) with several concentrations of bismuth was investigated. The Bi3+ ion is effectively incorporated into Gadolinium Iron Garnet, due to which the sintering temperature is considerably reduced, and the densification is improved significantly. Moreover, with increase in Bi concentration, the dielectric constant of GIG also increases, while the quality factor is slightly reduced, which is correlated with the higher ionic polarizability of bismuth. At an appreciably low sintering temperature of 1050°C, Gd2BiFe5O12 possess a porosity corrected relative permittivity value of 27.3 ± 0.2, unloaded quality factor (Qu × f) of 2990 ± 60 GHz (f = 7.3 GHz) and temperature coefficient of resonant frequency + 60 ± 1 ppm/°C.


Low-temperature sintering garnet structure microstructure microwave dielectric properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors acknowledge the SERB Project YSS-000868/2014. Authors also acknowledge the Alexander von Humboldt Foundation for the Vector Network Analyzer.


  1. 1.
    Q.I. Mohaidat, M. Lataifeh, K. Hamasha, S.H. Mahmood, I. Bsoul, and M. Awawdeh, Mater. Res. 21, 1 (2018).CrossRefGoogle Scholar
  2. 2.
    R. Pauthenet, J. Appl. Phys. 29, 253 (1958).CrossRefGoogle Scholar
  3. 3.
    G.F. Dionne, J. Appl. Phys. 47, 4220 (1976).CrossRefGoogle Scholar
  4. 4.
    T. Yamagishi, J. Awaka, Y. Kawashima, M. Uemura, S. Ebisu, S. Chikazawa, and S. Nagata, Philos. Mag. 85, 1819 (2005).CrossRefGoogle Scholar
  5. 5.
    M. Uemura, T. Yamagishi, S. Ebisu, S. Chikazawa, and S. Nagata, Philos. Mag. 88, 209 (2008).CrossRefGoogle Scholar
  6. 6.
    C.N. Chinnasamy, J.M. Greneche, M. Guillot, B. Latha, T. Sakai, C. Vittoria, and V.G. Harris, J. Appl. Phys. 107, 09A512 (2010).CrossRefGoogle Scholar
  7. 7.
    P. Vaqueiro and M.A. Lopez-Quintela, Chem. Mater. 9, 2836 (1997).CrossRefGoogle Scholar
  8. 8.
    K. Sadhana, S.R. Murthy, and K. Praveena, J. Mater. Sci.: Mater. Electron. 25, 5130 (2014).Google Scholar
  9. 9.
    P. Hernandez-Gomez, C. De Francisco, C. Torres, J. Iniguez, V. Raposo, J.M. Perdigao, and A.R. Ferreira, Phys. Stat. Sol. C 1, 1792 (2004).Google Scholar
  10. 10.
    J.C. Waerenborgh, D.P. Rojas, A.L. Shaula, V.V. Kharton, and F.M.B. Marques, Mater. Lett. 58, 3432 (2004).CrossRefGoogle Scholar
  11. 11.
    K. Sadhana, S.E. NainaVinodini, R. Sandhya, and K. Praveena, Adv. Mater. Lett. 6, 717 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Sugimoto, J. Am. Ceram. Soc. 82, 269 (1999).CrossRefGoogle Scholar
  13. 13.
    A. Paesano Jr, S.C. Zanatta, S.N. De Medeiros, L.F. Cótica, and J.B.M. Da Cunha, Hyperfine Interact. 161, 211 (2005).CrossRefGoogle Scholar
  14. 14.
    M. Pardavi-Horvath, J. Magn. Magn. Mater. 215, 171 (2000).CrossRefGoogle Scholar
  15. 15.
    E.J.J. Mallmann, A.S.B. Sombra, J.C. Goes, and P.B.A. Fechine, Solid State Phenom. 202, 65 (2013).CrossRefGoogle Scholar
  16. 16.
    M.A. Gilleo, Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances, Vol. 2, ed. E.P. Wohlfarth (Amsterdam: Elsevier, 1980), pp. 1–53.Google Scholar
  17. 17.
    B. Lax and K.J. Button, Microwave Ferrites and Ferri-Magnetics (New York: McGraw-Hill Book, 1962).Google Scholar
  18. 18.
    J.C. Waerenborgh, D.P. Rojas, A.L. Shaula, V.V. Kharton, and F.M.B. Marques, Mater. Lett. 58, 3432 (2004).CrossRefGoogle Scholar
  19. 19.
    S. Taketomi, C.M. Sorensen, and K.J. Klabunde, J. Magn. Magn. Mater. 222, 54 (2000).CrossRefGoogle Scholar
  20. 20.
    T. Ramesh, R.S. Shinde, and S.R. Murthy, J. Magn. Magn. Mater. 324, 3668 (2012).CrossRefGoogle Scholar
  21. 21.
    H.K. Xu, C.M. Sorensen, K.J. Klabunde, and G.C. Hadjipanayis, J. Mater. Res. 7, 712 (1992).CrossRefGoogle Scholar
  22. 22.
    S.C. Zanatta, L.F. Cótica, A. Paesano Jr, S.N. de Medeiros, J.B.M. da Cunhaand, and B. Hallouche, J. Am. Ceram. Soc. 88, 3316 (2005).CrossRefGoogle Scholar
  23. 23.
    C.Y. Tsay, C.Y. Liu, K.S. Liu, I.N. Lin, L.J. Hu, and T.S. Yeh, J. Magn. Magn. Mater. 239, 490 (2002).CrossRefGoogle Scholar
  24. 24.
    R.D. Shannon, J. Appl. Phys. 348, 73 (1993).Google Scholar
  25. 25.
    D.A.G. Bruggeman, Ann. Phys. 416, 636 (1935).CrossRefGoogle Scholar
  26. 26.
    J. Shen, Y. Bai, J. Zhou, and L. Li, J. Am. Ceram. Soc. 88, 3440 (2005).CrossRefGoogle Scholar
  27. 27.
    W. Zhang, Y. Bai, X. Han, L. Wang, X. Lu, L. Qiao, J. Cao, and D. Guo, Mater. Res. Bull. 48, 3850 (2013).CrossRefGoogle Scholar
  28. 28.
    J. Varghese, T. Joseph, M.T. Sebastian, N. Reeves-McLaren, and A. Feteira, J. Am. Ceram. Soc. 93, 2960 (2010).CrossRefGoogle Scholar
  29. 29.
    G. Subodh and M.T. Sebastian, J. Am. Ceram. Soc. 90, 2266 (2007).CrossRefGoogle Scholar
  30. 30.
    P.B.A. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavin, and A.S.B. Sombra, IETMicrow. Antennas Propag. 3, 1191 (2009).CrossRefGoogle Scholar
  31. 31.
    S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, J. Am. Ceram. Soc. 80, 1885 (1997).CrossRefGoogle Scholar
  32. 32.
    D. Zhou, J. Li, L.X. Pang, G.H. Chen, Z.M. Qi, D.W. Wang, and I.M. Reaney, ACS Omega. 1, 963 (2016).CrossRefGoogle Scholar
  33. 33.
    G.G. Yao, P. Liu, and H.W. Zhang, J. Am. Ceram. Soc. 96, 1691 (2013).CrossRefGoogle Scholar
  34. 34.
    C.F. Tseng, J. Am. Ceram. Soc. 91, 4101 (2008).CrossRefGoogle Scholar
  35. 35.
    B.D. Silverman, Phys. Rev. 125, 1921 (1962).CrossRefGoogle Scholar
  36. 36.
    M. Rakhi and G. Subodh, J. Eur. Ceram. Soc. 38, 4962 (2018).CrossRefGoogle Scholar
  37. 37.
    E.S. Kim, B.S. Chun, R. Freer, and R.J. Cernik, J. Eur. Ceram. Soc. 30, 1731 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations