Advertisement

ZnO-Nanoparticle-Dispersed Cu11.5Ni0.5Sb4S13−δ Tetrahedrite Composites with Enhanced Thermoelectric Performance

  • Fu-Hua Sun
  • Jinfeng Dong
  • Huaichao Tang
  • Hua-Lu Zhuang
  • Jing-Feng Li
Topical Collection: International Conference on Thermoelectrics 2018
  • 11 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018
  2. International Conference on Thermoelectrics 2018

Abstract

Cu12Sb4S13 tetrahedrite is an abundant natural that is also environmentally friendly. There have been efforts made to reach a unity of ZT value through optimizing the interdependence of electrical and thermal performance. In this study, we reported on ZnO nanoparticles-dispersed Cu11.5Ni0.5Sb4S13−δ composites that were synthesized by the mechanical alloying and spark plasma sintering method. The structural characterizations were conducted via scanning electron microscopy, electronic probe microscopic analysis and transmission electron microscopy. The ZnO-nanoparticles were uniformly distributed in the Cu12Sb4S13 grains. ZnO was used as a heterogeneous nucleation site to reveal the effectiveness of reducing thermal conductivity, likely derived from the strong low/mid-frequency phonon scattering. The lowest lattice thermal conductivity, 0.33 W m−1 K−1, was obtained at 673 K in 0.5 vol.% of ZnO sample. A small quantity of ZnO addition led to a high ZT ∼ 1.0 at 723 K, which increased by ∼ 42% in the pure-phased Cu12Sb4S13−δ sample.

Keywords

Thermoelectric tetrahedrite ZnO mechanical alloying 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by National Key R&D Program of China (Grant No. 2018YFB0703603) and the National Natural Science Foundation of China (Grant No. 11474176).

References

  1. 1.
    C. Forman, I.K. Muritala, R. Pardemann, and B. Meyer, Renew. Sustain Energy Rev. 57, 1568 (2016).CrossRefGoogle Scholar
  2. 2.
    Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, and L.D. Chen, Adv. Eng. Mater. 18, 194 (2016).CrossRefGoogle Scholar
  3. 3.
    D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W.S. Liu, L.A. Weinstein, J. Loomis, Z.F. Ren, and G. Chen, Nat. Energy 1, 1 (2016).CrossRefGoogle Scholar
  4. 4.
    L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, Science 351, 141 (2016).CrossRefGoogle Scholar
  5. 5.
    J. Shuai, J. Mao, S.W. Song, Q. Zhu, J.F. Sun, Y.M. Wang, R. He, J.W. Zhou, G. Chen, D.J. Singh, and Z.F. Ren, Energy Environ. Sci. 10, 799 (2017).CrossRefGoogle Scholar
  6. 6.
    Z.W. Chen, Z.Z. Jian, W. Li, Y.J. Chang, B.H. Ge, R. Hanus, J. Yang, Y. Chen, M.X. Huang, G.J. Snyder, and Y.Z. Pei, Adv. Mater. 29, 1606768 (2017).CrossRefGoogle Scholar
  7. 7.
    T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, and X. Zhao, Adv. Mater. 14, 1605884 (2017).CrossRefGoogle Scholar
  8. 8.
    J.-F. Li, Y. Pan, C.-F. Wu, F.-H. Sun, and T.-R. Wei, Sci. China Technol. Sci. 60, 1347 (2017).CrossRefGoogle Scholar
  9. 9.
    J.-F. Li, W.-S. Liu, L.-D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).CrossRefGoogle Scholar
  10. 10.
    W.Y. Zhao, Z.Y. Liu, P. Wei, Q.J. Zhang, W.T. Zhu, X.L. Su, X.F. Tang, J.H. Yang, Y. Liu, J. Shi, Y.M. Chao, S.Q. Lin, and Y.Z. Pei, Nat. Nanotechnol. 12, 55 (2017).CrossRefGoogle Scholar
  11. 11.
    Z.-Y. Li, J.-F. Li, W.-Y. Zhao, Q. Tan, T.-R. Wei, C.-F. Wu, and Z.-B. Xing, Appl. Phys. Lett. 104, 113905 (2014).CrossRefGoogle Scholar
  12. 12.
    Y. Pan, U. Aydemir, F.-H. Sun, C.-F. Wu, T.C. Chasapis, G.J. Snyder, and J.-F. Li, Adv. Sci. 4, 1700259 (2017).CrossRefGoogle Scholar
  13. 13.
    Q.F. Chen, Y.C. Yan, H. Zhan, W. Yao, Y. Chen, J.Y. Dai, X.N. Sun, and X.Y. Zhou, J. Materiomics 2, 179 (2016).CrossRefGoogle Scholar
  14. 14.
    J. Li, Q. Tan, J.-F. Li, D.-W. Liu, F. Li, Z.-Y. Li, M. Zou, and K. Wang, Adv. Funct. Mater. 23, 4317 (2013).CrossRefGoogle Scholar
  15. 15.
    C.-F. Wu, T.-R. Wei, F.-H. Sun, and J.-F. Li, Adv. Sci. 4, 1700199 (2017).CrossRefGoogle Scholar
  16. 16.
    A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, and S. Bhansali, Chem. Rev. 115, 4571 (2015).CrossRefGoogle Scholar
  17. 17.
    T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloy Compd. 634, 253 (2015).CrossRefGoogle Scholar
  18. 18.
    Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobola, and B. Lenoir, J. Mater. Chem. C 3, 10476 (2015).CrossRefGoogle Scholar
  19. 19.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  20. 20.
    K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).CrossRefGoogle Scholar
  21. 21.
    F.-H. Sun, C.-F. Wu, Z. Li, Y. Pan, Asfandiyar, J. Dong, and J.-F. Li, RSC Adv. 7, 18909 (2017).CrossRefGoogle Scholar
  22. 22.
    R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. Bouyrie, M. Ohta, K. Suekuni, Y. Kikuchi, P. Jood, A. Yamamoto, and T. Takabatake, J. Mater. Chem. C 5, 4174 (2017).CrossRefGoogle Scholar
  24. 24.
    W. Lai, Y.X. Wang, D.T. Morelli, and X. Lu, Adv. Funct. Mater. 25, 3648 (2015).CrossRefGoogle Scholar
  25. 25.
    F.-H. Sun, J. Dong, S. Dey, Asfandiyar, C.-F. Wu, Y. Pan, H. Tang, and J.-F. Li, Sci. China Mater. 61, 1209 (2018).CrossRefGoogle Scholar
  26. 26.
    R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).CrossRefGoogle Scholar
  27. 27.
    J. Callaway and H.C. Vonbaeyer, Phys. Rev. 120, 1149 (1960).CrossRefGoogle Scholar
  28. 28.
    H.S. Kim, W. Liu, and Z. Ren, Energy Environ. Sci. 10, 69 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations