Journal of Electronic Materials

, Volume 48, Issue 2, pp 745–777 | Cite as

State-of-the-Art Reviews and Analyses of Emerging Research Findings and Achievements of Thermoelectric Materials over the Past Years

  • Krishna Veni Selvan
  • Md Nazibul Hasan
  • Mohamed Sultan Mohamed AliEmail author


This review is focused on state-of-the-art thermoelectric materials (or thermoelements), from which the thermoelements with the highest figures of merit (z) along with the those having the greatest research interest and findings were surveyed and analyzed. These were in addition to the statistical analyses made in this review for categorizing z achievement ranges for all types of thermoelements. Almost 56% of positive thermoelements and 39.6% of negative thermoelements were discovered from 1950 to 2017, and a total of 62.2% of thermoelement research findings were reported in 2010–2017. Furthermore, nearly 47.65% of the discovered thermoelements preserved z in the range of 1–4.99 × 10−3 K−1, and only about 2.52% possessed less than 9.9 × 10−6 K−1. Chalcogenide was the major type of thermoelement studied to date, with overall representation of 37.2%. Nearly 68.9% of chalcogenide thermoelements were capable of reach 1–4.99 × 10−3 K−1, while 53% of metal oxide thermoelements ranged within 0.1–0.499 × 10−3 K−1. Nanostructure thermoelements achieved the highest z of 47 × 10−3 K−1 and 17 × 10−3 K−1 at 300 K, for Bi2Te3 quantum wires and Bi2Te3 quantum wells, respectively. Correspondingly, hybrid and conducting polymer thermoelements also reached z as high as 16 × 10−3 K−1 at 300 K for positive thermoelement: nano-Ag/regioregular poly(3-octylthiophene-2,5-diyl) and negative thermoelement: graphdiyne.


Chalcogenide conducting polymer doped semiconductor figure of merit nanostructure thermoelectric material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge financial support from Universiti Teknologi Malaysia under a Collaborative Research Grant Scheme (CRG 9) and the Ministry of Education Malaysia under a Fundamental Research Grant Scheme (FRGS 1/2018 TK04/UTM/02/5). Additionally, Krishna Veni Selvan appreciates the monetary aid from the MyPhD scholarship.


  1. 1.
    F.P. Incropera, D.P. Dewitt, T.L. Bergman, and A.S. Lavine, Foundations of Heat Transfer, 6th ed. (Singapore: Wiley, 2013).Google Scholar
  2. 2.
    S.K. Som, Introduction to Heat Transfer (New Delhi: PHI Learning, 2008).Google Scholar
  3. 3.
    M.I. Flik, B.I. Choi, and K.E. Goodson, J. Heat Transf. 114, 666 (1992).CrossRefGoogle Scholar
  4. 4.
    Z.H. Dughaish, Phys. B 322, 205 (2002).CrossRefGoogle Scholar
  5. 5.
    F. Träger, Handbook of Lasers and Optics (New York: Springer, 2007), p. 593.CrossRefGoogle Scholar
  6. 6.
    D.M. Rowe, Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).CrossRefGoogle Scholar
  7. 7.
    J.P. Moore, R.K. Williams, and R.S. Graves, J. Appl. Phys. 48, 610 (1977).CrossRefGoogle Scholar
  8. 8.
    J. Bass, J.S. Dugdale, C.L. Foiles, and A. Myers, Thermopower of Pure Metals Near Room Temperature, ed. J.L. Olsen and K.H. Hellwege (Berlin: Springer, 1985)Google Scholar
  9. 9.
    N. Cusack and P. Kendall, Proc. Phys. Soc. 72, 898 (1958).CrossRefGoogle Scholar
  10. 10.
    R.B. Roberts, Philos. Mag. 36, 91 (1977).CrossRefGoogle Scholar
  11. 11.
    R.B. Roberts, Philos. Mag. B 43, 1125 (1981).CrossRefGoogle Scholar
  12. 12.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press, 2006).Google Scholar
  13. 13.
    R.B. Roberts, F. Righini, and R.C. Compton, Philos. Mag. B 52, 1147 (1985).CrossRefGoogle Scholar
  14. 14.
    F. Cardarelli, Materials Handbook: A Concise Desktop Reference, 2nd ed. (London: Springer, 2008), p. 544.Google Scholar
  15. 15.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  16. 16.
    M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, and M. Mohamad, Renew. Sust. Energy Rev. 30, 337 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).CrossRefGoogle Scholar
  18. 18.
    M. Martín-González, O. Caballero-Calero, and P. Díaz-Chao, Renew. Sust. Energy Rev. 24, 288 (2013).CrossRefGoogle Scholar
  19. 19.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
  20. 20.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
  21. 21.
    S. Volz, Thermal Nanosystems and Nanomaterials (Berlin: Springer, 2009).CrossRefGoogle Scholar
  22. 22.
    E.U. Rafailov, M.A. Cataluna, and E.A. Avrutin, Ultrafast Lasers Based on Quantum Dot Structures: Physics and Devices (Berlin: Wiley-VCH Verlag & Co., 2011).CrossRefGoogle Scholar
  23. 23.
    L.B. Kong, T. Li, H.H. Hng, F. Boey, T. Zhang, and S. Li, Waste Energy Harvesting: Mechanical and Thermal Energies (Berlin: Springer, 2014).CrossRefGoogle Scholar
  24. 24.
    K.-C. Je and C.-H. Cho, J. Korean Phys. Soc. 54, 105 (2009).CrossRefGoogle Scholar
  25. 25.
    G.S. Nolas, D.T. Morelli, and T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999).CrossRefGoogle Scholar
  26. 26.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. 48, 8616 (2009).CrossRefGoogle Scholar
  27. 27.
    H.J. Goldsmid, A.R. Sheard, and D.A. Wright, Br. J. Appl. Phys. 9, 365 (1958).CrossRefGoogle Scholar
  28. 28.
    R. Bowers, R.W. Ure Jr, J.E. Bauerle, and A.J. Cornish, J. Appl. Phys. 30, 930 (1959).CrossRefGoogle Scholar
  29. 29.
    R. Bowers, J.E. Bauerle, and A.J. Cornish, J. Appl. Phys. 30, 1050 (1959).CrossRefGoogle Scholar
  30. 30.
    R.J. LaBotz, D.R. Mason, and D.F. O’Kane, J. Electrochem. Soc. 110, 127 (1963).CrossRefGoogle Scholar
  31. 31.
    G.A. Slack and V.G. Tsoukala, J. Appl. Phys. 76, 1665 (1994).CrossRefGoogle Scholar
  32. 32.
    M. Ohtaki, D. Ogura, K. Eguchi, and H. Arai, J. Mater. Chem. 4, 653 (1994).CrossRefGoogle Scholar
  33. 33.
    H. Hohl, A.P. Ramirez, W. Kaefer, K. Fess, C. Thurner, C. Kloc, and E. Bucher, Mat. Res. Soc. Symp. Proc. 478, 109 (1997).CrossRefGoogle Scholar
  34. 34.
    G.S. Nolas, J.L. Cohn, G.A. Slack, and S.B. Schujman, Appl. Phys. Lett. 73, 178 (1998).CrossRefGoogle Scholar
  35. 35.
    G.H. Johnson and R.A. Martin, US Patent 5973050 (1999).Google Scholar
  36. 36.
    N. Toshima, Macromol. Symp. 186, 81 (2002).CrossRefGoogle Scholar
  37. 37.
    F. Gascoin, S. Ottensmann, D. Stark, S.M. Haïle, and G.J. Snyder, Adv. Funct. Mater. 15, 1860 (2005).CrossRefGoogle Scholar
  38. 38.
    R.M. Ware and D.J. McNeill, IET Proc. Inst. Electric. Eng. 111, 178 (1964).Google Scholar
  39. 39.
    J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, and D.S. Beers, J. Appl. Phys. 35, 2899 (1964).CrossRefGoogle Scholar
  40. 40.
    D.A. Wright, Metall. Rev. 15, 147 (1970).Google Scholar
  41. 41.
    M. Bouchacourt and F. Thevenot, J. Mater. Sci. 20, 1237 (1985).CrossRefGoogle Scholar
  42. 42.
    Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, and K. Masumoto, Mater. Trans. JIM 33, 845 (1992).CrossRefGoogle Scholar
  43. 43.
    T. Kajikawa, K. Shida, K. Shiraishi, T. Ito, M. Omori, and T. Hirai, in IEEE 17th International Conference on Thermoelectronics (1998), p. 362–369.Google Scholar
  44. 44.
    W.-S. Cho, S.-W. Choi, and K. Park, Mater. Sci. Eng. B 68, 116 (1999).CrossRefGoogle Scholar
  45. 45.
    J.-I. Tani and H. Kido, Phys. B 364, 218 (2005).CrossRefGoogle Scholar
  46. 46.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  47. 47.
    M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).CrossRefGoogle Scholar
  48. 48.
    Q. Zhang, X.B. Zhao, H. Yin, and T.J. Zhu, J. Alloys Compd. 464, 9 (2008).CrossRefGoogle Scholar
  49. 49.
    J.-I. Tani and H. Kido, J. Alloys Compd. 466, 335 (2008).CrossRefGoogle Scholar
  50. 50.
    Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).CrossRefGoogle Scholar
  51. 51.
    T. Itoh and M. Yamada, J. Electron. Mater. 38, 925 (2009).CrossRefGoogle Scholar
  52. 52.
    A.U. Khan, N. Vlachos, and T. Kyratsi, Scripta Mater. 69, 606 (2013).CrossRefGoogle Scholar
  53. 53.
    W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).CrossRefGoogle Scholar
  54. 54.
    S. Muthiah, B. Sivaiah, B. Gahtori, K. Tyagi, A.K. Srivastava, B.D. Pathak, A. Dhar, and R.C. Budhani, J. Electron. Mater. 43, 1 (2014).CrossRefGoogle Scholar
  55. 55.
    G. Jiang, J. He, T. Zhu, C. Fu, X. Liu, L. Hu, and X. Zhao, Adv. Funct. Mater. 24, 3776 (2014).CrossRefGoogle Scholar
  56. 56.
    W. Liu, H.S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C.P. Opeil, S. Wilson, C.-W. Chu, and P. Natl, Acad. Sci. 112, 3269 (2015).CrossRefGoogle Scholar
  57. 57.
    X. Tang, G. Wang, Y. Zheng, Y. Zhang, K. Peng, L. Guo, S. Wang, M. Zeng, J. Dai, and G. Wang, Scripta Mater. 115, 52 (2016).CrossRefGoogle Scholar
  58. 58.
    A. Yamamoto, S. Ghodke, H. Miyazaki, M. Inukai, Y. Nishino, M. Matsunami, and T. Takeuchi, Jpn. J. Appl. Phys. 55, 020301 (2016).CrossRefGoogle Scholar
  59. 59.
    J. Mao, Y. Wang, B. Ge, Q. Jie, Z. Liu, U. Saparamadu, W. Liu, and Z. Ren, Phys. Chem. Chem. Phys. 18, 20726 (2016).CrossRefGoogle Scholar
  60. 60.
    J. Mao, H.S. Kim, J. Shuai, Z. Liu, R. He, U. Saparamadu, F. Tian, W. Liu, and Z. Ren, Acta Mater. 103, 633 (2016).CrossRefGoogle Scholar
  61. 61.
    W. Liu, J. Zhou, Q. Jie, Y. Li, H.S. Kim, J. Bao, G. Chen, and Z. Ren, Energy Environ. Sci. 9, 530 (2016).CrossRefGoogle Scholar
  62. 62.
    R. Santos, M. Nancarrow, S.X. Dou, and S.A. Yamini, Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
  63. 63.
    S. Battiston, S. Boldrini, M. Saleemi, A. Famengo, S. Fiameni, M.S. Toprak, and M. Fabrizio, J. Nanosci. Nanotechnol. 17, 1668 (2017).CrossRefGoogle Scholar
  64. 64.
    X. Tang, Y. Zhang, Y. Zheng, K. Peng, T. Huang, X. Lu, G. Wang, S. Wang, and X. Zhou, Appl. Therm. Eng. 111, 1396 (2017).CrossRefGoogle Scholar
  65. 65.
    U. Saparamadu, J. Mao, K. Dahal, H. Zhang, F. Tian, S. Song, W. Liu, and Z. Ren, Acta Mater. 124, 528 (2017).CrossRefGoogle Scholar
  66. 66.
    Y. Ding and Y. Wang, Appl. Surf. Sci. 396, 1164 (2017).CrossRefGoogle Scholar
  67. 67.
    F.D. Rosi, J.P. Dismukes, and E.F. Hockings, Electr. Eng. 79, 450 (1960).CrossRefGoogle Scholar
  68. 68.
    J.B. Conn and R.C. Taylor, J. Electrochem. Soc. 107, 977 (1960).CrossRefGoogle Scholar
  69. 69.
    P.F. Taylor and C. Wood, J. Appl. Phys. 32, 1 (1961).CrossRefGoogle Scholar
  70. 70.
    L.H. Brixner, J. Inorg. Nucl. Chem. 24, 257 (1962).CrossRefGoogle Scholar
  71. 71.
    F.M. Ryan, I.N. Greenberg, F.L. Carter, and R.C. Miller, J. Appl. Phys. 33, 864 (1962).CrossRefGoogle Scholar
  72. 72.
    W.M. Yim, E.V. Fitzke, and F.D. Rosi, J. Mater. Sci. 1, 52 (1966).CrossRefGoogle Scholar
  73. 73.
    I. Kudman, J. Mater. Sci. 7, 1027 (1972).CrossRefGoogle Scholar
  74. 74.
    S.K. Placheova, Phys. Status Solidi A 83, 349 (1984).CrossRefGoogle Scholar
  75. 75.
    T. Takeshita, K.A. Gschneidner Jr, and B.J. Beaudry, J. Appl. Phys. 57, 4633 (1985).CrossRefGoogle Scholar
  76. 76.
    J.F. Nakahara, T. Takeshita, M.J. Tschetter, B.J. Beaudry, and K.A. Gschneidner Jr, J. Appl. Phys. 63, 2331 (1988).CrossRefGoogle Scholar
  77. 77.
    T. Ohta, T. Kajikawa, T. Uesugi, and T. Tokiai, US Patent 5246504 (1993).Google Scholar
  78. 78.
    J.O. Sofo, G.D. Mahan, and J. Baars, J. Appl. Phys. 76, 2249 (1994).CrossRefGoogle Scholar
  79. 79.
    K. Kato, Y. Okamoto, J. Morimoto, and T. Miyakawa, J. Mater. Sci. Lett. 16, 914 (1997).CrossRefGoogle Scholar
  80. 80.
    B. Kuhn, W. Kaefer, K. Fess, K. Friemelt, C. Turner, M. Wendl, and E. Bucher, Phys. Status Solidi A 162, 661 (1997).CrossRefGoogle Scholar
  81. 81.
    M. Orihashi, Y. Noda, H.T. Kaibe, and I.A. Nishida, Mater. Trans. JIM 39, 672 (1998).CrossRefGoogle Scholar
  82. 82.
    D.B. Hyun, J.S. Hwang, B.C. You, T.S. Oh, and C.W. Hwang, J. Mater. Sci. 33, 5595 (1998).CrossRefGoogle Scholar
  83. 83.
    W.-S. Seo, R. Otsuka, H. Okuno, M. Ohta, and K. Koumoto, J. Mater. Res. 14, 4176 (1999).CrossRefGoogle Scholar
  84. 84.
    J.W. Sharp, B.C. Sales, D.G. Mandrus, and B.C. Chakoumakos, Appl. Phys. Lett. 74, 3794 (1999).CrossRefGoogle Scholar
  85. 85.
    M. Orihashi, Y. Noda, L.-D. Chen, T. Goto, and T. Hirai, J. Phys. Chem. Solids 61, 919 (2000).CrossRefGoogle Scholar
  86. 86.
    D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M.G. Kanatzidis, Science 287, 1024 (2000).CrossRefGoogle Scholar
  87. 87.
    H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B 64, 241104 (2001).CrossRefGoogle Scholar
  88. 88.
    B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett. 86, 4350 (2001).CrossRefGoogle Scholar
  89. 89.
    J.F. Meng, N.V. Chandra Shekar, J.V. Badding, D.Y. Chung, and M.G. Kanatzidis, J. Appl. Phys. 90, 2836 (2001).CrossRefGoogle Scholar
  90. 90.
    O. Yamashita, S. Tomiyoshi, and K. Makita, J. Appl. Phys. 93, 368 (2003).CrossRefGoogle Scholar
  91. 91.
    K. Kurosaki, H. Uneda, H. Muta, and S. Yamanaka, J. Alloys Compd. 376, 43 (2004).CrossRefGoogle Scholar
  92. 92.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  93. 93.
    O. Yamashita and S. Tomiyoshi, J. Appl. Phys. 95, 6277 (2004).CrossRefGoogle Scholar
  94. 94.
    X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu, and H.L. Ni, J. Alloys Compd. 387, 282 (2005).CrossRefGoogle Scholar
  95. 95.
    K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, Appl. Phys. Lett. 87, 061919 (2005).CrossRefGoogle Scholar
  96. 96.
    P. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X. Jia, and G. Zou, J. Phys. Condens. Mat. 17, 7319 (2005).CrossRefGoogle Scholar
  97. 97.
    T. Su, P. Zhu, H. Ma, G. Ren, L. Chen, W. Guo, Y. Iami, and X. Jia, Solid State Commun. 138, 580 (2006).CrossRefGoogle Scholar
  98. 98.
    J. Yang, R. Chen, X.A. Fan, S. Bao, and W. Zhu, J. Alloys Compd. 407, 330 (2006).CrossRefGoogle Scholar
  99. 99.
    P.F.P. Poudeu, J. D’Angelo, H. Kong, A. Downey, J.L. Short, R. Pcionek, T.P. Hogan, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. 128, 14347 (2006).CrossRefGoogle Scholar
  100. 100.
    J. Androulakis, R. Pcionek, H. Kong, C. Uher, A. Downey, and T. Hogan, Adv. Mater. 18, 1170 (2006).CrossRefGoogle Scholar
  101. 101.
    P.F.P. Poudeu, J. D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, and M.G. Kanatzidis, Angew. Chem. 118, 3919 (2006).CrossRefGoogle Scholar
  102. 102.
    F. Gascoin, J. Rasmussen, and G.J. Snyder, J. Alloys Compd. 427, 324 (2007).CrossRefGoogle Scholar
  103. 103.
    T.-S. Kim and B.-S. Chun, J. Alloys Compd. 437, 225 (2007).CrossRefGoogle Scholar
  104. 104.
    K. Kurosaki, H. Matsumoto, A. Charoenphakdee, S. Yamanaka, M. Ishimaru, and Y. Hirotsu, Appl. Phys. Lett. 93, 012101 (2008).CrossRefGoogle Scholar
  105. 105.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefGoogle Scholar
  106. 106.
    J.R. Sootsman, H. Kong, C. Uher, J.J. D’Angelo, C.I. Wu, T.P. Hogan, T. Caillat, and M.G. Kanatzidis, Angew. Chem. 120, 8746 (2008).CrossRefGoogle Scholar
  107. 107.
    L.-D. Zhao, B.-P. Zhang, J.-F. Li, M. Zhou, W.-S. Liu, and J. Liu, J. Alloys Compd. 455, 259 (2008).CrossRefGoogle Scholar
  108. 108.
    M.-L. Liu, F.-Q. Huang, L.-D. Chen, and I.-W. Chen, Appl. Phys. Lett. 94, 202103 (2009).CrossRefGoogle Scholar
  109. 109.
    X.Y. Shi, F.Q. Huang, M.L. Liu, and L.D. Chen, Appl. Phys. Lett. 94, 122103 (2009).CrossRefGoogle Scholar
  110. 110.
    Y. Gelbstein, B. Dado, O. Ben-Yehuda, Y. Sadia, Z. Dashevsky, and M.P. Dariel, Chem. Mater. 22, 1054 (2009).CrossRefGoogle Scholar
  111. 111.
    J.R. Sootsman, J. He, V.P. Dravid, C.-P. Li, C. Uher, and M.G. Kanatzidis, J. Appl. Phys. 105, 083718 (2009).CrossRefGoogle Scholar
  112. 112.
    K. Ahn, C. Li, C. Uher, and M.G. Kanatzidis, Chem. Mater. 21, 1361 (2009).CrossRefGoogle Scholar
  113. 113.
    A. Guéguen, P.F.P. Poudeu, C.-P. Li, S. Moses, C. Uher, J. He, V. Dravid, K.M. Paraskevopoulos, and M.G. Kanatzidis, Chem. Mater. 21, 1683 (2009).CrossRefGoogle Scholar
  114. 114.
    J.-S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S.I. Kim, E. Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar, Nature 459, 965 (2009).CrossRefGoogle Scholar
  115. 115.
    P.F.P. Poudeu, A. Guéguen, C.-I. Wu, T. Hogan, and M.G. Kanatzidis, Chem. Mater. 22, 1046 (2009).CrossRefGoogle Scholar
  116. 116.
    C. Wan, Y. Wang, N. Wang, W. Norimatsu, M. Kusunoki, and K. Koumoto, Sci. Technol. Adv. Mat. 11, 044306 (2010).CrossRefGoogle Scholar
  117. 117.
    X. Shi, L. Xi, J. Fan, W. Zhang, and L. Chen, Chem. Mater. 22, 6029 (2010).CrossRefGoogle Scholar
  118. 118.
    J.P. Carmo, L.M. Gonçalves, and J.H. Correia, IEEET Ind. Electron. 57, 861 (2010).CrossRefGoogle Scholar
  119. 119.
    K. Ahn, M.-K. Han, J. He, J. Androulakis, S. Ballikaya, C. Uher, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 132, 5227 (2010).CrossRefGoogle Scholar
  120. 120.
    J. Androulakis, I. Todorov, D.-Y. Chung, S. Ballikaya, G. Wang, C. Uher, and M. Kanatzidis, Phys. Rev. B 82, 115209 (2010).CrossRefGoogle Scholar
  121. 121.
    D. Parker and D.J. Singh, Phys. Rev. B 82, 035204 (2010).CrossRefGoogle Scholar
  122. 122.
    B. Du, H. Li, J. Xu, X. Tang, and C. Uher, Chem. Mater. 22, 5521 (2010).CrossRefGoogle Scholar
  123. 123.
    J. Xu, H. Li, B. Du, X. Tang, Q. Zhang, and C. Uher, J. Mater. Chem. 20, 6138 (2010).CrossRefGoogle Scholar
  124. 124.
    K. Kadel, L. Kumari, W.Z. Li, J.Y. Huang, and P.P. Provencio, Nanoscale Res. Lett. 6, 1 (2011).Google Scholar
  125. 125.
    E. Guilmeau, Y. Bréard, and A. Maignan, Appl. Phys. Lett. 99, 052107 (2011).CrossRefGoogle Scholar
  126. 126.
    F.-J. Fan, B. Yu, Y.-X. Wang, Y.-L. Zhu, X.-J. Liu, S.-H. Yu, and Z. Ren, J. Am. Chem. Soc. 133, 15910 (2011).CrossRefGoogle Scholar
  127. 127.
    C. Yang, F. Huang, L. Wu, and K. Xu, J. Phys. D Appl. Phys. 44, 295404 (2011).CrossRefGoogle Scholar
  128. 128.
    L.-D. Zhao, S.-H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.-I. Wu, T.P. Hogan, D.-Y. Chung, and V.P. Dravid, J. Am. Chem. Soc. 133, 20476 (2011).CrossRefGoogle Scholar
  129. 129.
    E.J. Skoug, J.D. Cain, and D.T. Morelli, Appl. Phys. Lett. 98, 261911 (2011).CrossRefGoogle Scholar
  130. 130.
    H. Wang, Y. Pei, A.D. LaLonde, and G.J. Snyder, Adv. Mater. 23, 1366 (2011).CrossRefGoogle Scholar
  131. 131.
    Y. Pei, A. LaLonde, S. Iwanaga, and G.J. Snyder, Energy Environ. Sci. 4, 2085 (2011).CrossRefGoogle Scholar
  132. 132.
    K. Biswas, J. He, G. Wang, S.-H. Lo, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 4, 4675 (2011).CrossRefGoogle Scholar
  133. 133.
    E.M. Levin, B.A. Cook, J.L. Harringa, S.L. Bud’ko, R. Venkatasubramanian, and K. Schmidt-Rohr, Adv. Funct. Mater. 21, 441 (2011).CrossRefGoogle Scholar
  134. 134.
    K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).CrossRefGoogle Scholar
  135. 135.
    J.S. Rhyee, K. Ahn, K.H. Lee, H.S. Ji, and J.H. Shim, Adv. Mater. 23, 2191 (2011).CrossRefGoogle Scholar
  136. 136.
    S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).CrossRefGoogle Scholar
  137. 137.
    Y. Pei, A.D. LaLonde, N.A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, and G.J. Snyder, Adv. Mater. 23, 5674 (2011).CrossRefGoogle Scholar
  138. 138.
    Y. Pei, N.A. Heinz, A. LaLonde, and G.J. Snyder, Energy Environ. Sci. 4, 3640 (2011).CrossRefGoogle Scholar
  139. 139.
    C.M. Jaworski, B. Wiendlocha, V. Jovovic, and J.P. Heremans, Energy Environ. Sci. 4, 4155 (2011).CrossRefGoogle Scholar
  140. 140.
    H. Yang, L.A. Jauregui, G. Zhang, Y.P. Chen, and Y. Wu, Nano Lett. 12, 540 (2012).CrossRefGoogle Scholar
  141. 141.
    M. Ibáñez, R. Zamani, A. LaLonde, D. Cadavid, W. Li, A. Shavel, J. Arbiol, J.R. Morante, S. Gorsse, and G.J. Snyder, J. Am. Chem. Soc. 134, 4060 (2012).CrossRefGoogle Scholar
  142. 142.
    H. Wang, Y. Pei, A.D. LaLonde, G.J. Snyder, and P. Natl, Acad. Sci. 109, 9705 (2012).CrossRefGoogle Scholar
  143. 143.
    M.K. Han, J. Androulakis, S.J. Kim, and M.G. Kanatzidis, Adv. Energy Mater. 2, 157 (2012).CrossRefGoogle Scholar
  144. 144.
    T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G.J. Snyder, A. Harnwunggmoung, T. Sugahara, and Y. Ohishi, Adv. Mater. 24, 3622 (2012).CrossRefGoogle Scholar
  145. 145.
    Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, and K. Esfarjani, Energy Environ. Sci. 5, 5246 (2012).CrossRefGoogle Scholar
  146. 146.
    B. Yu, W. Liu, S. Chen, H. Wang, H. Wang, G. Chen, and Z. Ren, Nano Energy 1, 472 (2012).CrossRefGoogle Scholar
  147. 147.
    Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, and Z. Ren, J. Am. Chem. Soc. 134, 10031 (2012).CrossRefGoogle Scholar
  148. 148.
    Y. Pei, A.D. LaLonde, N.A. Heinz, and G.J. Snyder, Adv. Energy Mater. 2, 670 (2012).CrossRefGoogle Scholar
  149. 149.
    M. Ibáñez, D. Cadavid, U. Anselmi-Tamburini, R. Zamani, S. Gorsse, W. Li, A.M. López, J.R. Morante, J. Arbiol, and A. Cabot, J. Mater. Chem. A 1, 1421 (2013).CrossRefGoogle Scholar
  150. 150.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  151. 151.
    Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, and P. Natl, Acad. Sci. 110, 13261 (2013).CrossRefGoogle Scholar
  152. 152.
    D.R. Brown, T. Day, K.A. Borup, S. Christensen, B.B. Iversen, and G.J. Snyder, APL Mater. 1, 052107 (2013).CrossRefGoogle Scholar
  153. 153.
    C. Uhlig, E. Guenes, A.S. Schulze, M.T. Elm, P.J. Klar, and S. Schlecht, J. Electron. Mater. 43, 1 (2014).CrossRefGoogle Scholar
  154. 154.
    M. Zhou, Z.M. Gibbs, H. Wang, Y. Han, C. Xin, L. Li, and G.J. Snyder, Phys. Chem. Chem. Phys. 16, 20741 (2014).CrossRefGoogle Scholar
  155. 155.
    K. Tyagi, B. Gahtori, S. Bathula, V. Toutam, S. Sharma, N.K. Singh, and A. Dhar, Appl. Phys. Lett. 105, 261902 (2014).CrossRefGoogle Scholar
  156. 156.
    K.S. Weldert, W.G. Zeier, T.W. Day, M. Panthöfer, G.J. Snyder, and W. Tremel, J. Am. Chem. Soc. 136, 12035 (2014).CrossRefGoogle Scholar
  157. 157.
    C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, and G.J. Snyder, J. Mater. Chem. A 2, 11171 (2014).CrossRefGoogle Scholar
  158. 158.
    K. Suekuni, F.S. Kim, H. Nishiate, M. Ohta, H.I. Tanaka, and T. Takabatake, Appl. Phys. Lett. 105, 132107 (2014).CrossRefGoogle Scholar
  159. 159.
    A. Banik and K. Biswas, J. Mater. Chem. A 2, 9620 (2014).CrossRefGoogle Scholar
  160. 160.
    Y. Lee, S.-H. Lo, C. Chen, H. Sun, D.-Y. Chung, T.C. Chasapis, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Commun. 5, 1 (2014).Google Scholar
  161. 161.
    G. Tan, L.-D. Zhao, F. Shi, J.W. Doak, S.-H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. 136, 7006 (2014).CrossRefGoogle Scholar
  162. 162.
    X. Lu and D. Morelli, J. Electron. Mater. 43, 1 (2014).CrossRefGoogle Scholar
  163. 163.
    P. Qiu, T. Zhang, Y. Qiu, X. Shi, and L. Chen, Energy Environ. Sci. 7, 4000 (2014).CrossRefGoogle Scholar
  164. 164.
    G. Tan, F. Shi, H. Sun, L.-D. Zhao, C. Uher, V.P. Dravid, and M.G. Kanatzidis, J. Mater. Chem. A 2, 20849 (2014).CrossRefGoogle Scholar
  165. 165.
    Y. Luo, J. Yang, G. Li, M. Liu, Y. Xiao, L. Fu, W. Li, P. Zhu, J. Peng, and S. Gao, Adv. Energy Mater. 4, 1 (2014).CrossRefGoogle Scholar
  166. 166.
    H. Wang, Z.M. Gibbs, Y. Takagiwa, and G.J. Snyder, Energy Environ. Sci. 7, 804 (2014).CrossRefGoogle Scholar
  167. 167.
    Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, and G.J. Snyder, Adv. Mater. 26, 3974 (2014).CrossRefGoogle Scholar
  168. 168.
    S.N. Guin, D.S. Negi, R. Datta, and K. Biswas, J. Mater. Chem. A 2, 4324 (2014).CrossRefGoogle Scholar
  169. 169.
    J. Heo, G. Laurita, S. Muir, M.A. Subramanian, and D.A. Keszler, Chem. Mater. 26, 2047 (2014).CrossRefGoogle Scholar
  170. 170.
    H.J. Wu, L.-D. Zhao, F.S. Zheng, D. Wu, Y.L. Pei, X. Tong, M.G. Kanatzidis, and J.Q. He, Nat. Commun. 5, 1 (2014).Google Scholar
  171. 171.
    R.J. Korkosz, T.C. Chasapis, S.-H. Lo, J.W. Doak, Y.J. Kim, C.-I. Wu, E. Hatzikraniotis, T.P. Hogan, D.N. Seidman, and C. Wolverton, J. Am. Chem. Soc. 136, 3225 (2014).CrossRefGoogle Scholar
  172. 172.
    D. Wu, L.-D. Zhao, S. Hao, Q. Jiang, F. Zheng, J.W. Doak, H. Wu, H. Chi, Y. Gelbstein, and C. Uher, J. Am. Chem. Soc. 136, 11412 (2014).CrossRefGoogle Scholar
  173. 173.
    B. Zhong, Y. Zhang, W. Li, Z. Chen, J. Cui, W. Li, Y. Xie, Q. Hao, and Q. He, Appl. Phys. Lett. 105, 123902 (2014).CrossRefGoogle Scholar
  174. 174.
    L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).CrossRefGoogle Scholar
  175. 175.
    Y. Xiao, G. Chen, H. Qin, M. Wu, Z. Xiao, J. Jiang, J. Xu, H. Jiang, and G. Xu, J. Mater. Chem. A 2, 8512 (2014).CrossRefGoogle Scholar
  176. 176.
    D. Wickramaratne, F. Zahid, and R.K. Lake, J. Chem. Phys. 140, 124710 (2014).CrossRefGoogle Scholar
  177. 177.
    Q. Zhang, E.K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, and Z. Ren, Adv. Energy Mater. 5, 1 (2015).Google Scholar
  178. 178.
    Y. He, T. Zhang, X. Shi, S.-H. Wei, and L. Chen, NPG Asia Mater. 7, 1 (2015).CrossRefGoogle Scholar
  179. 179.
    S.N. Guin, V. Srihari, and K. Biswas, J. Mater. Chem. A 3, 648 (2015).CrossRefGoogle Scholar
  180. 180.
    R. Chetty, P.K. DS, G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giester, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2015).CrossRefGoogle Scholar
  181. 181.
    L.P. Hu, T.J. Zhu, X.Q. Yue, X.H. Liu, Y.G. Wang, Z.J. Xu, and X.B. Zhao, Acta Mater. 85, 270 (2015).CrossRefGoogle Scholar
  182. 182.
    M. Ibáñez, R.J. Korkosz, Z. Luo, P. Riba, D. Cadavid, S. Ortega, A. Cabot, and M.G. Kanatzidis, J. Am. Chem. Soc. 137, 4046 (2015).CrossRefGoogle Scholar
  183. 183.
    A. Banik, U.S. Shenoy, S. Anand, U.V. Waghmare, and K. Biswas, Chem. Mater. 27, 581 (2015).CrossRefGoogle Scholar
  184. 184.
    X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).CrossRefGoogle Scholar
  185. 185.
    W. Li, Z. Chen, S. Lin, Y. Chang, B. Ge, Y. Chen, and Y. Pei, J. Materiomics 1, 307 (2015).CrossRefGoogle Scholar
  186. 186.
    G. Tan, F. Shi, J.W. Doak, H. Sun, L.-D. Zhao, P. Wang, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 8, 267 (2015).CrossRefGoogle Scholar
  187. 187.
    R.A.R. Alrabi, N. Mecholsky, J. Hwang, W. Kim, J.-S. Rhyee, D. Wee, and M. Fornari, Chem. Mater. 28, 376 (2015).Google Scholar
  188. 188.
    F. Fahrnbauer, D. Souchay, G. Wagner, and O. Oeckler, J. Am. Chem. Soc. 137, 12633 (2015).CrossRefGoogle Scholar
  189. 189.
    A. Bhaskar, Y.-H. Pai, W.-M. Wu, C.-L. Chang, and C.-J. Liu, Ceram. Int. 42, 1070 (2016).CrossRefGoogle Scholar
  190. 190.
    C. Bourgès, T. Barbier, G. Guélou, P. Vaqueiro, A.V. Powell, O.I. Lebedev, N. Barrier, Y. Kinemuchi, and E. Guilmeau, J. Eur. Ceram. Soc. 36, 1183 (2016).CrossRefGoogle Scholar
  191. 191.
    C. Bourgès, M. Gilmas, P. Lemoine, N.E. Mordvinova, O.I. Lebedev, E. Hug, V. Nassif, B. Malaman, R. Daou, and E. Guilmeau, J. Mater. Chem. C 4, 7455 (2016).CrossRefGoogle Scholar
  192. 192.
    N. Nandihalli, Q. Guo, S. Gorsse, A.U. Khan, T. Mori, and H. Kleinke, Eur. J. Inorg. Chem. 2016, 853 (2016).Google Scholar
  193. 193.
    Y. Ren, Q. Jiang, J. Yang, Y. Luo, D. Zhang, Y. Cheng, and Z. Zhou, J. Materiomics 2, 172 (2016).CrossRefGoogle Scholar
  194. 194.
    J.-B. Vaney, J. Carreaud, G. Delaizir, C. Morin, J. Monnier, E. Alleno, A. Piarristeguy, A. Pradel, A.P. Goncalves, and E.B. Lopes, J. Electron. Mater. 45, 1786 (2016).CrossRefGoogle Scholar
  195. 195.
    Q. Tan, W. Sun, Z. Li, and J.-F. Li, J. Alloys Compd. 672, 558 (2016).CrossRefGoogle Scholar
  196. 196.
    L. Wu, J. Yang, T. Zhang, S. Wang, P. Wei, W. Zhang, L. Chen, and J. Yang, J. Phys. Condens. Mat. 28, 085801 (2016).CrossRefGoogle Scholar
  197. 197.
    T.-R. Wei, G. Tan, X. Zhang, C.-F. Wu, J.-F. Li, V.P. Dravid, G.J. Snyder, and M.G. Kanatzidis, J. Am. Chem. Soc. 138, 8875 (2016).CrossRefGoogle Scholar
  198. 198.
    T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, and E. Guilmeau, J. Am. Ceram. Soc. 99, 51 (2016).CrossRefGoogle Scholar
  199. 199.
    J. He, J. Xu, X. Tan, G.-Q. Liu, H. Shao, Z. Liu, H. Jiang, and J. Jiang, J. Materiomics 2, 165 (2016).CrossRefGoogle Scholar
  200. 200.
    A. Banik, U.S. Shenoy, S. Saha, U.V. Waghmare, and K. Biswas, J. Am. Chem. Soc. 138, 13068 (2016).CrossRefGoogle Scholar
  201. 201.
    H. Guo, H. Xin, X. Qin, Z. Jian, D. Li, Y. Li, and C. Li, J. Phys. D Appl. Phys. 49, 065302 (2016).CrossRefGoogle Scholar
  202. 202.
    L. Zhang, J. Wang, Z. Cheng, Q. Sun, Z. Li, and S. Dou, J. Mater. Chem. A 4, 7936 (2016).CrossRefGoogle Scholar
  203. 203.
    K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, and X. Zhou, Energy Environ. Sci. 9, 454 (2016).CrossRefGoogle Scholar
  204. 204.
    L.-D. Zhao, X. Zhang, H. Wu, G. Tan, Y. Pei, Y. Xiao, C. Chang, D. Wu, H. Chi, and L. Zheng, J. Am. Chem. Soc. 138, 2366 (2016).CrossRefGoogle Scholar
  205. 205.
    M.K. Jana, K. Pal, U.V. Waghmare, and K. Biswas, Angew. Chem. 55, 7792 (2016).CrossRefGoogle Scholar
  206. 206.
    J.B. Vaney, J. Carreaud, G. Delaizir, A. Piarristeguy, A. Pradel, E. Alleno, J. Monnier, E.B. Lopes, A.P. Gonçalves, and A. Dauscher, J. Mater. Chem. C 4, 2329 (2016).CrossRefGoogle Scholar
  207. 207.
    W. Li, S. Lin, B. Ge, J. Yang, W. Zhang, and Y. Pei, Adv. Sci. 3, 1600196 (2016).Google Scholar
  208. 208.
    H. Guo, H. Xin, X. Qin, J. Zhang, D. Li, Y. Li, C. Song, and C. Li, J. Alloys Compd. 689, 87 (2016).CrossRefGoogle Scholar
  209. 209.
    M.H. Lee, J.-S. Rhyee, S. Kim, and Y.-H. Choa, J. Alloys Compd. 657, 639 (2016).CrossRefGoogle Scholar
  210. 210.
    X.J. Tan, G.Q. Liu, J.T. Xu, H.Z. Shao, J. Jiang, and H.C. Jiang, Phys. Chem. Chem. Phys. 18, 20635 (2016).CrossRefGoogle Scholar
  211. 211.
    H. Lin, G. Tan, J.N. Shen, S. Hao, L.M. Wu, N. Calta, C. Malliakas, S. Wang, C. Uher, and C. Wolverton, Angew. Chem. 55, 11431 (2016).CrossRefGoogle Scholar
  212. 212.
    J.Q. Li, Z.W. Lu, S.M. Li, F.S. Liu, W.Q. Ao, and Y. Li, Scripta Mater. 112, 144 (2016).CrossRefGoogle Scholar
  213. 213.
    M.K. Hooda and C.S. Yadav, Appl. Phys. Lett. 111, 053902 (2017).CrossRefGoogle Scholar
  214. 214.
    N. Gostkowska, T. Miruszewski, B. Trawiński, B. Bochentyn, and B. Kusz, Solid State Sci. 73, 41 (2017).CrossRefGoogle Scholar
  215. 215.
    B. Srinivasan, C. Boussard-Plédel, V. Dorcet, M. Samanta, K. Biswas, R. Lefèvre, F. Gascoin, F. Cheviré, S. Tricot, and M. Reece, Materials 10, 1 (2017).CrossRefGoogle Scholar
  216. 216.
    V. Pavan Kumar, L. Paradis-Fortin, P. Lemoine, V. Caignaert, B. Raveau, B. Malaman, G.R. Le Caër, S.P. Cordier, and E. Guilmeau, Inorg. Chem. 56, 13376 (2017).CrossRefGoogle Scholar
  217. 217.
    H. Xie, X. Su, G. Zheng, T. Zhu, K. Yin, Y. Yan, C. Uher, M.G. Kanatzidis, and X. Tang, Adv. Energy Mater. 7, 1 (2017).Google Scholar
  218. 218.
    Y. Lu, S. Chen, W. Wu, Z. Du, Y. Chao, and J. Cui, Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
  219. 219.
    V. Pavan Kumar, T. Barbier, V. Caignaert, B. Raveau, R. Daou, B. Malaman, G.R.L. Caër, P. Lemoine, and E. Guilmeau, J. Phys. Chem. C 121, 16454 (2017).CrossRefGoogle Scholar
  220. 220.
    X.-Q. Huang, Y.-X. Chen, M. Yin, D. Feng, and J. He, Nanotechnology 28, 105708 (2017).CrossRefGoogle Scholar
  221. 221.
    M.M. Mallick and S. Vitta, J. Appl. Phys. 122, 024903 (2017).CrossRefGoogle Scholar
  222. 222.
    N. Karthikeyan, S. Ghanta, S. Misra, G. Jaiganesh, P.P. Jana, and K. Sivakumar, J. Alloys Compd. 729, 303 (2017).CrossRefGoogle Scholar
  223. 223.
    L.-B. Zhang, H.-L. Qi, J.-L. Gao, T. Mao, J.-X. Di, and G.-Y. Xu, J. Electron. Mater. 46, 2894 (2017).CrossRefGoogle Scholar
  224. 224.
    X. Tang, D. Fan, K. Peng, D. Yang, L. Guo, X. Lu, J. Dai, G. Wang, H. Liu, and X. Zhou, Chem. Mater. 29, 7401 (2017).CrossRefGoogle Scholar
  225. 225.
    M.H. Lee, D.-G. Byeon, J.-S. Rhyee, and B. Ryu, J. Mater. Chem. A 5, 2235 (2017).CrossRefGoogle Scholar
  226. 226.
    K.S. Prasad, A. Rao, K. Tyagi, N.S. Chauhan, B. Gahtori, S. Bathula, and A. Dhar, Phys. B 512, 39 (2017).CrossRefGoogle Scholar
  227. 227.
    V. Pavan Kumar, T. Barbier, P. Lemoine, B. Raveau, V. Nassif, and E. Guilmeau, Dalton Trans. 46, 2174 (2017).CrossRefGoogle Scholar
  228. 228.
    Y. Luo, Y. Zheng, Z. Luo, S. Hao, C. Du, Q. Liang, Z. Li, K.A. Khor, K. Hippalgaonkar, and J. Xu, Adv. Energy Mater. 8, 1702167 (2018).Google Scholar
  229. 229.
    Y. Kosaka, K. Suekuni, K. Hashikuni, Y. Bouyrie, M. Ohta, and T. Takabatake, Phys. Chem. Chem. Phys. 19, 8874 (2017).CrossRefGoogle Scholar
  230. 230.
    J.C. Li, D. Li, X.Y. Qin, and J. Zhang, Scripta Mater. 126, 6 (2017).CrossRefGoogle Scholar
  231. 231.
    P. Qin, Z.-H. Ge, and J. Feng, J. Alloys Compd. 696, 782 (2017).CrossRefGoogle Scholar
  232. 232.
    X. Du, R. Shi, Y. Guo, Y. Wang, Y. Ma, and Z. Yuan, Dalton Trans. 46, 2129 (2017).CrossRefGoogle Scholar
  233. 233.
    Y.M. Zhou, H.J. Wu, Y.L. Pei, C. Chang, Y. Xiao, X. Zhang, S.K. Gong, J.Q. He, and L.-D. Zhao, Acta Mater. 125, 542 (2017).CrossRefGoogle Scholar
  234. 234.
    H. Zhao, X. Xu, C. Li, R. Tian, R. Zhang, R. Huang, Y. Lyu, D. Li, X. Hu, and L. Pan, J. Mater. Chem. A 5, 23267 (2017).CrossRefGoogle Scholar
  235. 235.
    D.S. Prem Kumar, R. Chetty, O.E. Femi, K. Chattopadhyay, P. Malar, and R.C. Mallik, J. Electron. Mater. 46, 2616 (2017).CrossRefGoogle Scholar
  236. 236.
    B. Jiang, P. Qiu, E. Eikeland, H. Chen, Q. Song, D. Ren, T. Zhang, J. Yang, B.B. Iversen, and X. Shi, J. Mater. Chem. C 5, 943 (2017).CrossRefGoogle Scholar
  237. 237.
    X. Tan, X. Tan, G. Liu, J. Xu, H. Shao, H. Hu, M. Jin, H. Jiang, and J. Jiang, J. Mater. Chem. C 5, 7504 (2017).CrossRefGoogle Scholar
  238. 238.
    J. Shen, X. Zhang, Z. Chen, S. Lin, J. Li, W. Li, S. Li, Y. Chen, and Y. Pei, J. Mater. Chem. A 5, 5314 (2017).CrossRefGoogle Scholar
  239. 239.
    Y. Xiao, W. Li, C. Chang, Y. Chen, L. Huang, J. He, and L.-D. Zhao, J. Alloys Compd. 724, 208 (2017).CrossRefGoogle Scholar
  240. 240.
    S.D. Kang, J.-H. Pöhls, U. Aydemir, P. Qiu, C.C. Stoumpos, R. Hanus, M.A. White, X. Shi, L. Chen, and M.G. Kanatzidis, Mater. Today Phys. 1, 7 (2017).CrossRefGoogle Scholar
  241. 241.
    Z.-H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, L. Zheng, R.E. Dunin-Borkowski, P. Qin, and J. Feng, J. Am. Chem. Soc. 139, 9714 (2017).CrossRefGoogle Scholar
  242. 242.
    Y.K. Lee, K. Ahn, J. Cha, C. Zhou, H.S. Kim, G. Choi, S.I. Chae, J.-H. Park, S.-P. Cho, and S.H. Park, J. Am. Chem. Soc. 139, 10887 (2017).CrossRefGoogle Scholar
  243. 243.
    K. Zhang, Q. Zhang, L. Wang, W. Jiang, and L. Chen, J. Alloys Compd. 725, 563 (2017).CrossRefGoogle Scholar
  244. 244.
    S. Lin, W. Li, S. Li, X. Zhang, Z. Chen, Y. Xu, Y. Chen, and Y. Pei, Joule 1, 816 (2017).CrossRefGoogle Scholar
  245. 245.
    Y. Pan, U. Aydemir, F.H. Sun, C.F. Wu, T.C. Chasapis, G.J. Snyder, and J.F. Li, Adv. Sci. 4, 1 (2017).Google Scholar
  246. 246.
    Y. Liu, G. García, S. Ortega, D. Cadavid, P. Palacios, J. Lu, M. Ibáñez, L. Xi, J. De Roo, and A.M. López, J. Mater. Chem. A 5, 2592 (2017).CrossRefGoogle Scholar
  247. 247.
    T. Grossfeld, A. Sheskin, Y. Gelbstein, and Y. Amouyal, Crystals 7, 1 (2017).CrossRefGoogle Scholar
  248. 248.
    M. Yaprintsev, R. Lyubushkin, O. Soklakova, and O. Ivanov, Rare Met. 37, 642 (2018).Google Scholar
  249. 249.
    M. Jeong, J.-Y. Tak, S. Lee, W.-S. Seo, H.K. Cho, and Y.S. Lim, J. Alloys Compd. 696, 213 (2017).CrossRefGoogle Scholar
  250. 250.
    K. Zhao, P. Qiu, Q. Song, A.B. Blichfeld, E. Eikeland, D. Ren, B. Ge, B.B. Iversen, X. Shi, and L. Chen, Mater. Today Phys. 1, 14 (2017).CrossRefGoogle Scholar
  251. 251.
    Y. Pei, G. Tan, D. Feng, L. Zheng, Q. Tan, X. Xie, S. Gong, Y. Chen, J.F. Li, and J. He, Adv. Energy Mater. 7, 1 (2017).CrossRefGoogle Scholar
  252. 252.
    J. Luo, L. You, J. Zhang, K. Guo, H. Zhu, L. Gu, Z. Yang, X. Li, J. Yang, and W. Zhang, ACS Appl. Mater. Interface 9, 8729 (2017).CrossRefGoogle Scholar
  253. 253.
    A. Shafique and Y.-H. Shin, Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
  254. 254.
    D. Ginting, C.-C. Lin, R. Lydia, H.S. So, H. Lee, J. Hwang, W. Kim, R.A.R. Al Orabi, and J.-S. Rhyee, Acta Mater. 131, 98 (2017).CrossRefGoogle Scholar
  255. 255.
    A.A. Olvera, N.A. Moroz, P. Sahoo, P. Ren, T.P. Bailey, A.A. Page, C. Uher, and P.F.P. Poudeu, Energy Environ. Sci. 10, 1668 (2017).CrossRefGoogle Scholar
  256. 256.
    S. Roychowdhury, R. Panigrahi, S. Perumal, and K. Biswas, ACS Energy Lett. 2, 349 (2017).CrossRefGoogle Scholar
  257. 257.
    R. Cao, H. Song, W. Gao, E. Li, X. Li, and X. Hu, J. Alloys Compd. 727, 326 (2017).CrossRefGoogle Scholar
  258. 258.
    D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
  259. 259.
    J.W. Sharp, E.C. Jones, R.K. Williams, P.M. Martin, and B.C. Sales, J. Appl. Phys. 78, 1013 (1995).CrossRefGoogle Scholar
  260. 260.
    T. Caillat, J. Kulleck, A. Borshchevsky, and J.P. Fleurial, J. Appl. Phys. 79, 8419 (1996).CrossRefGoogle Scholar
  261. 261.
    T. Caillat, A. Borshchevsky, and J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996).CrossRefGoogle Scholar
  262. 262.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  263. 263.
    J.-P. Fleurial, A. Borshchevsky, T. Caillat, D.T. Morelli, and G.P. Meisner, in IEEE 15th International Conference on Thermoelectronics (1996), p. 91–95.Google Scholar
  264. 264.
    S. Katsuyama, Y. Shichijo, M. Ito, K. Majima, and H. Nagai, J. Appl. Phys. 84, 6708 (1998).CrossRefGoogle Scholar
  265. 265.
    N.R. Dilley, E.D. Bauer, M.B. Maple, S. Dordevic, D.N. Basov, F. Freibert, T.W. Darling, A. Migliori, B.C. Chakoumakos, and B.C. Sales, Phys. Rev. B 61, 4608 (2000).CrossRefGoogle Scholar
  266. 266.
    B.C. Sales, B.C. Chakoumakos, and D. Mandrus, Phys. Rev. B 61, 2475 (2000).CrossRefGoogle Scholar
  267. 267.
    G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  268. 268.
    Y. Kawaharada, K. Kurosaki, M. Uno, and S. Yamanaka, J. Alloys Compd. 315, 193 (2001).CrossRefGoogle Scholar
  269. 269.
    L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
  270. 270.
    K.T. Wojciechowski, Mater. Res. Bull. 37, 2023 (2002).CrossRefGoogle Scholar
  271. 271.
    J.S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, and T. Hirai, J. Appl. Phys. 91, 3698 (2002).CrossRefGoogle Scholar
  272. 272.
    G.A. Lamberton, S. Bhattacharya, R.T. Littleton, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang, and G.S. Nolas, Appl. Phys. Lett. 80, 598 (2002).CrossRefGoogle Scholar
  273. 273.
    M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Müller, J. Appl. Phys. 95, 4852 (2004).CrossRefGoogle Scholar
  274. 274.
    X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 53711 (2006).CrossRefGoogle Scholar
  275. 275.
    Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li, Appl. Phys. Lett. 89, 221107 (2006).CrossRefGoogle Scholar
  276. 276.
    T. He, J. Chen, H.D. Rosenfeld, and M.A. Subramanian, Chem. Mater. 18, 759 (2006).CrossRefGoogle Scholar
  277. 277.
    X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
  278. 278.
    J. Peng, J. He, P.N. Alboni, and T.M. Tritt, J. Electron. Mater. 38, 981 (2009).CrossRefGoogle Scholar
  279. 279.
    S.Q. Bai, Y.Z. Pei, L.D. Chen, W.Q. Zhang, X.Y. Zhao, and J. Yang, Acta Mater. 57, 3135 (2009).CrossRefGoogle Scholar
  280. 280.
    H. Li, X. Tang, Q. Zhang, and C. Uher, Appl. Phys. Lett. 94, 102114 (2009).CrossRefGoogle Scholar
  281. 281.
    G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer, Intermetallics 18, 57 (2010).CrossRefGoogle Scholar
  282. 282.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  283. 283.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Hochenhofer, R. Anbalagan, R.C. Mallik, and E. Schafler, Acta Mater. 76, 434 (2014).CrossRefGoogle Scholar
  284. 284.
    S. Ballikaya and C. Uher, J. Alloys Compd. 585, 168 (2014).CrossRefGoogle Scholar
  285. 285.
    E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou, R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmánek, and B. Lenoir, Rev. Sci. Instrum. 86, 011301 (2015).CrossRefGoogle Scholar
  286. 286.
    Y. Tang, R. Hanus, S.-W. Chen, and G.J. Snyder, Nat. Commun. 6, 1 (2015).Google Scholar
  287. 287.
    R. Carlini, A.U. Khan, R. Ricciardi, T. Mori, and G. Zanicchi, J. Alloys Compd. 655, 321 (2016).CrossRefGoogle Scholar
  288. 288.
    C. Sekine, H. Kato, Y. Kawamura, and C.H. Lee, Mater. Sci. Forum 879, 1737 (2017).CrossRefGoogle Scholar
  289. 289.
    N. Shaheen, X. Shen, M.S. Javed, H. Zhan, L. Guo, R. Alsharafi, T. Huang, X. Lu, G. Wang, and X. Zhou, J. Electron. Mater. 46, 2958 (2017).CrossRefGoogle Scholar
  290. 290.
    G. Son, K.H. Lee, and S.-M. Choi, J. Electron. Mater. 46, 2839 (2017).CrossRefGoogle Scholar
  291. 291.
    K.-M. Song, D.-K. Shin, K.-W. Jang, S.-M. Choi, S. Lee, W.-S. Seo, and I.-H. Kim, J. Electron. Mater. 46, 2634 (2017).CrossRefGoogle Scholar
  292. 292.
    S. Peng, J. Sun, B. Cui, X. Meng, D. Qin, Z. Liu, and W. Cai, Inorg. Chem. Front. 4, 1697 (2017).CrossRefGoogle Scholar
  293. 293.
    A.U. Khan, K. Kobayashi, D.-M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y. Xue, B. Jiang, K. Tsuchiya, and D. Golberg, Nano Energy 31, 152 (2017).CrossRefGoogle Scholar
  294. 294.
    A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, and G.D. Stucky, J. Appl. Phys. 99, 023708 (2006).CrossRefGoogle Scholar
  295. 295.
    B. Sun, X. Jia, D. Huo, H. Sun, Y. Zhang, B. Liu, H. Liu, L. Kong, and H. Ma, J. Alloys Compd. 658, 19 (2016).CrossRefGoogle Scholar
  296. 296.
    J. Wang, O.I. Lebedev, K. Lee, J.-A. Dolyniuk, P. Klavins, S. Bux, and K. Kovnir, Chem. Sci. 8, 8030 (2017).CrossRefGoogle Scholar
  297. 297.
    S.K. Singh, Y. Isoda, and M. Imai, Intermetallics 82, 93 (2017).CrossRefGoogle Scholar
  298. 298.
    F. Cheng, L. Shen, D. Li, H. Liu, J. Wang, and S. Deng, Mater. Technol. 32, 105 (2017).CrossRefGoogle Scholar
  299. 299.
    J.R. Nuss, U. Wedig, W. Xie, P. Yordanov, J. Bruin, R. Hübner, A. Weidenkaff, and H. Takagi, Chem. Mater. 29, 6956 (2017).CrossRefGoogle Scholar
  300. 300.
    S. Utsunomiya, K. Kishimoto, S. Koda, K. Akai, R. Fujita, H. Asada, and T. Koyanagi, J. Alloys Compd. 693, 1039 (2017).CrossRefGoogle Scholar
  301. 301.
    H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wölfing, and E. Bucher, J. Phys. Condens. Mat. 11, 1697 (1999).CrossRefGoogle Scholar
  302. 302.
    Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).CrossRefGoogle Scholar
  303. 303.
    T. Katayama, S.W. Kim, Y. Kimura, and Y. Mishima, J. Electron. Mater. 32, 1160 (2003).CrossRefGoogle Scholar
  304. 304.
    S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005).CrossRefGoogle Scholar
  305. 305.
    N. Shutoh and S. Sakurada, J. Alloys Compd. 389, 204 (2005).CrossRefGoogle Scholar
  306. 306.
    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloys Compd. 407, 326 (2006).CrossRefGoogle Scholar
  307. 307.
    S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, and J. Blumm, Appl. Phys. Lett. 88, 042106 (2006).CrossRefGoogle Scholar
  308. 308.
    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Jpn. J. Appl. Phys. 46, L673 (2007).CrossRefGoogle Scholar
  309. 309.
    S.-W. Kim, Y. Kimura, and Y. Mishima, Intermetallics 15, 349 (2007).CrossRefGoogle Scholar
  310. 310.
    S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).CrossRefGoogle Scholar
  311. 311.
    H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 469, 50 (2009).CrossRefGoogle Scholar
  312. 312.
    W.J. Xie, J. He, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, and X.F. Tang, Acta Mater. 58, 4705 (2010).CrossRefGoogle Scholar
  313. 313.
    S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scripta Mater. 66, 1073 (2012).CrossRefGoogle Scholar
  314. 314.
    X. Yan, W. Liu, S. Chen, H. Wang, Q. Zhang, G. Chen, and Z. Ren, Adv. Energy Mater. 3, 1195 (2013).CrossRefGoogle Scholar
  315. 315.
    C. Fu, T. Zhu, Y. Pei, H. Xie, H. Wang, G.J. Snyder, Y. Liu, Y. Liu, and X. Zhao, Adv. Energy Mater. 4, 1 (2014).CrossRefGoogle Scholar
  316. 316.
    H. Xie, H. Wang, C. Fu, Y. Liu, G.J. Snyder, X. Zhao, and T. Zhu, Sci. Rep. 4, 1 (2014).Google Scholar
  317. 317.
    E. Rausch, B. Balke, S. Ouardi, and C. Felser, Phys. Chem. Chem. Phys. 16, 25258 (2014).CrossRefGoogle Scholar
  318. 318.
    G. Joshi, R. He, M. Engber, G. Samsonidze, T. Pantha, E. Dahal, K. Dahal, J. Yang, Y. Lan, and B. Kozinsky, Energy Environ. Sci. 7, 4070 (2014).CrossRefGoogle Scholar
  319. 319.
    C. Fu, T. Zhu, Y. Liu, H. Xie, and X. Zhao, Energy Environ. Sci. 8, 216 (2015).CrossRefGoogle Scholar
  320. 320.
    C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. 6, 1 (2015).Google Scholar
  321. 321.
    Y. Lei, Y. Li, L. Xu, J. Yang, R. Wan, and H. Long, J. Alloys Compd. 660, 166 (2016).CrossRefGoogle Scholar
  322. 322.
    H. Zhang, Y. Wang, L. Huang, S. Chen, H. Dahal, D. Wang, and Z. Ren, J. Alloys Compd. 654, 321 (2016).CrossRefGoogle Scholar
  323. 323.
    J.M. Mena, E. Rausch, S. Ouardi, T. Gruhn, G.H. Fecher, H.G. Schoberth, H. Emmerich, and C. Felser, J. Electron. Mater. 45, 1382 (2016).CrossRefGoogle Scholar
  324. 324.
    T.M. Bhat and D.C. Gupta, RSC Adv. 6, 80302 (2016).CrossRefGoogle Scholar
  325. 325.
    M. Gürth, G. Rogl, V.V. Romaka, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 104, 210 (2016).CrossRefGoogle Scholar
  326. 326.
    C.W. Tseng, C.N. Kuo, H.W. Lee, K.F. Chen, R.C. Huang, C.-M. Wei, Y.K. Kuo, and C.S. Lue, Phys. Rev. B 96, 125106 (2017).CrossRefGoogle Scholar
  327. 327.
    I. Knapp, B. Budinska, D. Milosavljevic, P. Heinrich, S. Khmelevskyi, R. Moser, R. Podloucky, P. Prenninger, and E. Bauer, Phys. Rev. B 96, 045204 (2017).CrossRefGoogle Scholar
  328. 328.
    S. Bandaru, A. Katre, J. Carrete, N. Mingo, and P. Jund, Nanosc. Microsc. Thermophys. Eng. 21, 237 (2017).CrossRefGoogle Scholar
  329. 329.
    S. Yousuf and D.C. Gupta, Mater. Chem. Phys. 192, 33 (2017).CrossRefGoogle Scholar
  330. 330.
    J. Kangsabanik and A. Alam, J. Mater. Chem. A 5, 6131 (2017).CrossRefGoogle Scholar
  331. 331.
    L. Huang, Q. Zhang, Y. Wang, R. He, J. Shuai, J. Zhang, C. Wang, and Z. Ren, Phys. Chem. Chem. Phys. 19, 25683 (2017).CrossRefGoogle Scholar
  332. 332.
    Y. Li, C. Cheng, Y. Lei, M. Wang, and R.D. Wan, Dalton Trans. 46, 33 (2017).CrossRefGoogle Scholar
  333. 333.
    T.M. Bhat and D.C. Gupta, J. Magn. Magn. Mater. 435, 173 (2017).CrossRefGoogle Scholar
  334. 334.
    R. He, H. Zhu, J. Sun, J. Mao, H. Reith, S. Chen, G. Schierning, K. Nielsch, and Z. Ren, Mater. Today Phys. 1, 24 (2017).CrossRefGoogle Scholar
  335. 335.
    S. Yousuf and D.C. Gupta, Mater. Res. Express 4, 116307 (2017).CrossRefGoogle Scholar
  336. 336.
    H. Joshi, D.P. Rai, K.D. Verma, K.C. Bhamu, and R.K. Thapa, J. Alloys Compd. 726, 1155 (2017).CrossRefGoogle Scholar
  337. 337.
    G. Rogl, P. Sauerschnig, Z. Rykavets, V.V. Romaka, P. Heinrich, B. Hinterleitner, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 131, 336 (2017).CrossRefGoogle Scholar
  338. 338.
    S. Yousuf and D.C. Gupta, Mater. Sci. Eng. B 221, 73 (2017).CrossRefGoogle Scholar
  339. 339.
    A. Yamamoto and T. Takeuchi, J. Electron. Mater. 46, 3200 (2017).CrossRefGoogle Scholar
  340. 340.
    S. Yousuf and D.C. Gupta, Indian J. Phys. 91, 33 (2017).CrossRefGoogle Scholar
  341. 341.
    C.L. Condron, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, J. Solid State Chem. 179, 2252 (2006).CrossRefGoogle Scholar
  342. 342.
    S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).CrossRefGoogle Scholar
  343. 343.
    G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).CrossRefGoogle Scholar
  344. 344.
    X.-J. Wang, M.-B. Tang, J.-T. Zhao, H.-H. Chen, and X.-X. Yang, Appl. Phys. Lett. 90, 232107 (2007).CrossRefGoogle Scholar
  345. 345.
    S.R. Brown, E.S. Toberer, T. Ikeda, C.A. Cox, F. Gascoin, S.M. Kauzlarich, and G.J. Snyder, Chem. Mater. 20, 3412 (2008).CrossRefGoogle Scholar
  346. 346.
    E.S. Toberer, S.R. Brown, T. Ikeda, S.M. Kauzlarich, and G.J. Snyder, Appl. Phys. Lett. 93, 062110 (2008).CrossRefGoogle Scholar
  347. 347.
    E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, and G.J. Snyder, Adv. Funct. Mater. 18, 2795 (2008).CrossRefGoogle Scholar
  348. 348.
    H. Zhang, J.-T. Zhao, Y. Grin, X.-J. Wang, M.-B. Tang, Z.-Y. Man, H.-H. Chen, and X.-X. Yang, J. Chem. Phys. 129, 164713 (2008).CrossRefGoogle Scholar
  349. 349.
    E.S. Toberer, A. Zevalkink, N. Crisosto, and G.J. Snyder, Adv. Funct. Mater. 20, 4375 (2010).CrossRefGoogle Scholar
  350. 350.
    C.A. Cox, S.R. Brown, G.J. Snyder, and S.M. Kauzlarich, J. Electron. Mater. 39, 1373 (2010).CrossRefGoogle Scholar
  351. 351.
    K. Guo, Q.G. Cao, X.J. Feng, M.B. Tang, H.H. Chen, X. Guo, L. Chen, Y. Grin, and J.T. Zhao, Eur. J. Inorg. Chem. 2011, 4043 (2011).CrossRefGoogle Scholar
  352. 352.
    R. Carlini, D. Marré, I. Pallecchi, R. Ricciardi, and G. Zanicchi, Intermetallics 45, 60 (2014).CrossRefGoogle Scholar
  353. 353.
    H. Zhao, J. Sui, Z. Tang, Y. Lan, Q. Jie, D. Kraemer, K. McEnaney, A. Guloy, G. Chen, and Z. Ren, Nano Energy 7, 97 (2014).CrossRefGoogle Scholar
  354. 354.
    A. Bhardwaj, N.S. Chauhan, and D.K. Misra, J. Mater. Chem. A 3, 10777 (2015).CrossRefGoogle Scholar
  355. 355.
    P. Ying, X. Liu, C. Fu, X. Yue, H. Xie, X. Zhao, W. Zhang, and T. Zhu, Chem. Mater. 27, 909 (2015).CrossRefGoogle Scholar
  356. 356.
    A. Bhardwaj, N.S. Chauhan, S. Goel, V. Singh, J.J. Pulikkotil, T.D. Senguttuvan, and D.K. Misra, Phys. Chem. Chem. Phys. 18, 6191 (2016).CrossRefGoogle Scholar
  357. 357.
    A. Basit, S.A. Khan, G. Murtaza, A. Mehmood, R. Khenata, S.B. Omran, and M. Yaseen, Mat. Sci. Semicon. Proc. 43, 69 (2016).CrossRefGoogle Scholar
  358. 358.
    U. Aydemir, A. Zevalkink, A. Ormeci, S. Bux, and G.J. Snyder, J. Mater. Chem. A 4, 1867 (2016).CrossRefGoogle Scholar
  359. 359.
    J. Shuai, Z. Liu, H.S. Kim, Y. Wang, J. Mao, R. He, J. Sui, and Z. Ren, J. Mater. Chem. A 4, 4312 (2016).CrossRefGoogle Scholar
  360. 360.
    Z. Liu, J. Shuai, J. Mao, Y. Wang, Z. Wang, W. Cai, J. Sui, and Z. Ren, Acta Mater. 102, 17 (2016).CrossRefGoogle Scholar
  361. 361.
    O. Janka, J.V. Zaikina, S.K. Bux, H. Tabatabaifar, H. Yang, N.D. Browning, and S.M. Kauzlarich, J. Solid State Chem. 245, 152 (2017).CrossRefGoogle Scholar
  362. 362.
    X. Li, M. Zhu, Z. Wu, J. Guo, X.-T. Tao, and S.-Q. Xia, Chem. Mater. 29, 3324 (2017).CrossRefGoogle Scholar
  363. 363.
    Z. Liu, J. Mao, S. Peng, B. Zhou, W. Gao, J. Sui, Y. Pei, and Z. Ren, Mater. Today Phys. 2, 54 (2017).CrossRefGoogle Scholar
  364. 364.
    B.R. Ortiz, P. Gorai, L. Krishna, R. Mow, A. Lopez, R. McKinney, V. Stevanović, and E.S. Toberer, J. Mater. Chem. A 5, 4036 (2017).CrossRefGoogle Scholar
  365. 365.
    J. Sun, J. Shuai, Z. Ren, and D.J. Singh, Mater. Today Phys. 2, 40 (2017).CrossRefGoogle Scholar
  366. 366.
    J. Mao, J. Shuai, S. Song, Y. Wu, R. Dally, J. Zhou, Z. Liu, J. Sun, Q. Zhang, and C. dela Cruz, Proc. Natl. Acad. Sci. USA 114, 10548 (2017).Google Scholar
  367. 367.
    J. Zhang, L. Song, S.H. Pedersen, H. Yin, L.T. Hung, and B.B. Iversen, Nat. Commun. 8, 1 (2017).CrossRefGoogle Scholar
  368. 368.
    Z. Liu, Y. Wang, W. Gao, J. Mao, H. Geng, J. Shuai, W. Cai, J. Sui, and Z. Ren, Nano Energy 31, 194 (2017).CrossRefGoogle Scholar
  369. 369.
    N.B. Elsner and S. Ghamaty, US Patent 5436467 (1995).Google Scholar
  370. 370.
    N.B. Elsner and S. Ghamaty, US Patent 5550387 (1996).Google Scholar
  371. 371.
    L.D. Hicks, T.C. Harman, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 53, R10493 (1996).CrossRefGoogle Scholar
  372. 372.
    T.C. Harman, D.L. Spears, and M.P. Walsh, J. Electron. Mater. 28, L1 (1999).CrossRefGoogle Scholar
  373. 373.
    T. Koga, X. Sun, S.B. Cronin, and M.S. Dresselhaus, Appl. Phys. Lett. 75, 2438 (1999).CrossRefGoogle Scholar
  374. 374.
    X. Sun, Z. Zhang, and M.S. Dresselhaus, Appl. Phys. Lett. 74, 4005 (1999).CrossRefGoogle Scholar
  375. 375.
    T.C. Harman, P.J. Taylor, D.L. Spears, and M.P. Walsh, J. Electron. Mater. 29, L1 (2000).CrossRefGoogle Scholar
  376. 376.
    T. Koga, O. Rabin, and M.S. Dresselhaus, Phys. Rev. B 62, 16703 (2000).CrossRefGoogle Scholar
  377. 377.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  378. 378.
    H. Beyer, J. Nurnus, H. Böttner, A. Lambrecht, E. Wagner, and G. Bauer, Physica E 13, 965 (2002).CrossRefGoogle Scholar
  379. 379.
    T.C. Harman, M.P. Walsh, and G.W. Turner, J. Electron. Mater. 34, L19 (2005).CrossRefGoogle Scholar
  380. 380.
    N. Peranio, O. Eibl, and J. Nurnus, J. Appl. Phys. 100, 114306 (2006).CrossRefGoogle Scholar
  381. 381.
    H. Ohta, Mater. Today 10, 44 (2007).CrossRefGoogle Scholar
  382. 382.
    J.-H. Lee, G.A. Galli, and J.C. Grossman, Nano Lett. 8, 3750 (2008).CrossRefGoogle Scholar
  383. 383.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  384. 384.
    W. Liang, O. Rabin, A.I. Hochbaum, M. Fardy, M. Zhang, and P. Yang, Nano Res. 2, 394 (2009).CrossRefGoogle Scholar
  385. 385.
    M. Zebarjadi, Z. Bian, R. Singh, A. Shakouri, R. Wortman, V. Rawat, and T. Sands, J. Electron. Mater. 38, 960 (2009).CrossRefGoogle Scholar
  386. 386.
    N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).CrossRefGoogle Scholar
  387. 387.
    L. Shi, D. Yao, G. Zhang, and B. Li, Appl. Phys. Lett. 96, 173108 (2010).CrossRefGoogle Scholar
  388. 388.
    Y. Zhang, H. Wang, S. Kraemer, Y. Shi, F. Zhang, M. Snedaker, K. Ding, M. Moskovits, G.J. Snyder, and G.D. Stucky, ACS Nano 5, 3158 (2011).CrossRefGoogle Scholar
  389. 389.
    K.K. Saha, T. Markussen, K.S. Thygesen, and B.K. Nikolić, Phys. Rev. B 84, 041412 (2011).CrossRefGoogle Scholar
  390. 390.
    Y. Min, J.W. Roh, H. Yang, M. Park, S.I. Kim, S. Hwang, S.M. Lee, K.H. Lee, and U. Jeong, Adv. Mater. 25, 1425 (2013).CrossRefGoogle Scholar
  391. 391.
    H.S. Shin, S.G. Jeon, J. Yu, Y.-S. Kim, H.M. Park, and J.Y. Song, Nanoscale 6, 6158 (2014).CrossRefGoogle Scholar
  392. 392.
    K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, and R. D’Agosta, Phys. Rev. B 89, 125403 (2014).CrossRefGoogle Scholar
  393. 393.
    D.D. Fan, H.J. Liu, L. Cheng, P.H. Jiang, J. Shi, and X.F. Tang, Appl. Phys. Lett. 105, 133113 (2014).CrossRefGoogle Scholar
  394. 394.
    J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang, D.D. Fan, J. Shi, X.F. Tang, and Q.J. Zhang, Sci. Rep. 4, 1 (2014).Google Scholar
  395. 395.
    X. Zou, X. Chen, H. Huang, Y. Xu, and W. Duan, Nanoscale 7, 8776 (2015).CrossRefGoogle Scholar
  396. 396.
    M. Saleemi, M.Y. Tafti, A. Jacquot, M. Jägle, M. Johnsson, and M.S. Toprak, Inorg. Chem. 55, 1831 (2016).CrossRefGoogle Scholar
  397. 397.
    W. Ma, T. Miao, X. Zhang, K. Takahashi, T. Ikuta, B. Zhang, and Z. Ge, Nanoscale 8, 2704 (2016).CrossRefGoogle Scholar
  398. 398.
    Z. Zhang, Y. Xie, Q. Peng, and Y. Chen, Sci. Rep. 6, 1 (2016).CrossRefGoogle Scholar
  399. 399.
    Z.-H. Ge, P. Qin, D. He, X. Chong, D. Feng, Y.-H. Ji, J. Feng, and J. He, ACS Appl. Mater. Interface 9, 4828 (2017).CrossRefGoogle Scholar
  400. 400.
    M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai, J. Solid State Chem. 120, 105 (1995).CrossRefGoogle Scholar
  401. 401.
    M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).CrossRefGoogle Scholar
  402. 402.
    M. Yasukawa and N. Murayama, J. Mater. Sci. 32, 6489 (1997).CrossRefGoogle Scholar
  403. 403.
    M. Yasukawa and N. Murayama, J. Mater. Sci. Lett. 16, 1731 (1997).CrossRefGoogle Scholar
  404. 404.
    H. Yakabe, K. Kikuchi, Y. Sasago, and K. Uchinokura, in IEEE 16th International Conference on Thermoelectronics (1997), p. 523–527.Google Scholar
  405. 405.
    K. Koumoto, W.S. Seo, and S. Ozawa, Appl. Phys. Lett. 71, 1475 (1997).CrossRefGoogle Scholar
  406. 406.
    T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 8, 409 (1998).CrossRefGoogle Scholar
  407. 407.
    M. Kazeoka, H. Hiramatsu, W.-S. Seo, and K. Koumoto, J. Mater. Res. 13, 523 (1998).CrossRefGoogle Scholar
  408. 408.
    S. Li, R. Funahashi, I. Matsubara, K. Ueno, and H. Yamada, J. Mater. Chem. 9, 1659 (1999).CrossRefGoogle Scholar
  409. 409.
    W. Shin and N. Murayama, Jpn. J. Appl. Phys. 38, L1336 (1999).CrossRefGoogle Scholar
  410. 410.
    W. Shin and N. Murayama, J. Mater. Res. 15, 382 (2000).CrossRefGoogle Scholar
  411. 411.
    S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, and H. Yamada, J. Mater. Sci. Lett. 19, 1339 (2000).CrossRefGoogle Scholar
  412. 412.
    J.-W. Moon, W.-S. Seo, H. Okabe, T. Okawa, and K. Koumoto, J. Mater. Chem. 10, 2007 (2000).CrossRefGoogle Scholar
  413. 413.
    R. Funahashi, I. Matsubara, and S. Sodeoka, Appl. Phys. Lett. 76, 2385 (2000).CrossRefGoogle Scholar
  414. 414.
    K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 315, 234 (2001).CrossRefGoogle Scholar
  415. 415.
    S. Li, R. Funahashi, I. Matsubara, H. Yamada, K. Ueno, and S. Sodeoka, Ceram. Int. 27, 321 (2001).CrossRefGoogle Scholar
  416. 416.
    J.-W. Moon, Y. Masuda, W.-S. Seo, and K. Koumoto, Mater. Sci. Eng. B 85, 70 (2001).CrossRefGoogle Scholar
  417. 417.
    J.-W. Moon, Y. Masuda, W.-S. Seo, and K. Koumoto, Mater. Lett. 48, 225 (2001).CrossRefGoogle Scholar
  418. 418.
    T. Tani, S. Isobe, W.-S. Seo, and K. Koumoto, J. Mater. Chem. 11, 2324 (2001).CrossRefGoogle Scholar
  419. 419.
    K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys. 40, 4644 (2001).CrossRefGoogle Scholar
  420. 420.
    J. Nan, J. Wu, Y. Deng, and C.W. Nan, J. Eur. Ceram. Soc. 23, 859 (2003).CrossRefGoogle Scholar
  421. 421.
    Y. Masuda, D. Nagahama, H. Itahara, T. Tani, W.S. Seo, and K. Koumoto, J. Mater. Chem. 13, 1094 (2003).CrossRefGoogle Scholar
  422. 422.
    H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 350, 292 (2003).CrossRefGoogle Scholar
  423. 423.
    B.T. Cong, T. Tsuji, P.X. Thao, P.Q. Thanh, and Y. Yamamura, Phys. B 352, 18 (2004).CrossRefGoogle Scholar
  424. 424.
    D. Wang, L. Chen, Q. Wang, and J. Li, J. Alloys Compd. 376, 58 (2004).CrossRefGoogle Scholar
  425. 425.
    H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloy. Compd. 368, 22 (2004).CrossRefGoogle Scholar
  426. 426.
    D. Wang, L. Chen, Q. Yao, and J. Li, Solid State Commun. 129, 615 (2004).CrossRefGoogle Scholar
  427. 427.
    J. Androulakis, P. Migiakis, and J. Giapintzakis, Appl. Phys. Lett. 84, 1099 (2004).CrossRefGoogle Scholar
  428. 428.
    S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).CrossRefGoogle Scholar
  429. 429.
    K.H. Kim, S.H. Shim, K.B. Shim, K. Niihara, and J. Hojo, J. Am. Ceram. Soc. 88, 628 (2005).CrossRefGoogle Scholar
  430. 430.
    D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto, J. Appl. Phys. 100, 084911 (2006).CrossRefGoogle Scholar
  431. 431.
    C.-J. Liu, L.-C. Huang, and J.-S. Wang, Appl. Phys. Lett. 89, 204102 (2006).CrossRefGoogle Scholar
  432. 432.
    S. Ohta, H. Ohta, and K. Koumoto, J. Ceram. Soc. Jpn. 114, 102 (2006).CrossRefGoogle Scholar
  433. 433.
    T. He, J. Chen, T.G. Calvarese, and M.A. Subramanian, Solid State Sci. 8, 467 (2006).CrossRefGoogle Scholar
  434. 434.
    N. Okinaka and T. Akiyama, Jpn. J. Appl. Phys. 45, 7009 (2006).CrossRefGoogle Scholar
  435. 435.
    Y. Ono, K.-I. Satoh, T. Nozaki, and T. Kajitani, Jpn. J. Appl. Phys. 46, 1071 (2007).CrossRefGoogle Scholar
  436. 436.
    H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, and M. Hirano, Nat. Mater. 6, 129 (2007).CrossRefGoogle Scholar
  437. 437.
    J. Pei, G. Chen, D.Q. Lu, P.S. Liu, and N. Zhou, Solid State Commun. 146, 283 (2008).CrossRefGoogle Scholar
  438. 438.
    Y. Wang, Y. Sui, J. Cheng, X. Wang, J. Miao, Z. Liu, Z. Qian, and W. Su, J. Alloys Compd. 448, 1 (2008).CrossRefGoogle Scholar
  439. 439.
    L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff, Inorg. Chem. 47, 8077 (2008).CrossRefGoogle Scholar
  440. 440.
    D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Commun. 146, 97 (2008).CrossRefGoogle Scholar
  441. 441.
    W. Wunderlich, J. Nucl. Mater. 389, 57 (2009).CrossRefGoogle Scholar
  442. 442.
    J.W. Park, D.H. Kwak, S.H. Yoon, and S.C. Choi, J. Alloys Compd. 487, 550 (2009).CrossRefGoogle Scholar
  443. 443.
    H.Q. Liu, Y. Song, S.N. Zhang, X.B. Zhao, and F.P. Wang, J. Phys. Chem. Solids 70, 600 (2009).CrossRefGoogle Scholar
  444. 444.
    H.Q. Liu, X.B. Zhao, T.J. Zhu, Y. Song, and F.P. Wang, Curr. Appl. Phys. 9, 409 (2009).CrossRefGoogle Scholar
  445. 445.
    M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).CrossRefGoogle Scholar
  446. 446.
    M. Senthilkumar and R. Vijayaraghavan, Sci. Technol. Adv. Mat. 10, 015007 (2009).CrossRefGoogle Scholar
  447. 447.
    N.V. Nong, C.-J. Liu, and M. Ohtaki, J. Alloys Compd. 491, 53 (2010).CrossRefGoogle Scholar
  448. 448.
    H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L. Zhang, M.L. Zhao, J.C. Li, and N. Yin, Mater. Res. Bull. 45, 809 (2010).CrossRefGoogle Scholar
  449. 449.
    L.D. Zhao, D. Berardan, Y.L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, Appl. Phys. Lett. 97, 092118 (2010).CrossRefGoogle Scholar
  450. 450.
    N.V. Nong, C.-J. Liu, and M. Ohtaki, J. Alloys Compd. 509, 977 (2011).CrossRefGoogle Scholar
  451. 451.
    K.P. Ong, D.J. Singh, and P. Wu, Phys. Rev. B 83, 115110 (2011).CrossRefGoogle Scholar
  452. 452.
    Y. Liu, L.-D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B.-P. Zhang, D. Berardan, N. Dragoe, and Y.-H. Lin, J. Am. Chem. Soc. 133, 20112 (2011).CrossRefGoogle Scholar
  453. 453.
    S.G. Tan, L.J. Li, Y. Liu, P. Tong, B.C. Zhao, W.J. Lu, and Y.P. Sun, Physica C 483, 94 (2012).CrossRefGoogle Scholar
  454. 454.
    J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L.-D. Zhao, Energy Environ. Sci. 5, 8543 (2012).CrossRefGoogle Scholar
  455. 455.
    J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.-D. Zhao, J. Mater. Chem. A 2, 4903 (2014).CrossRefGoogle Scholar
  456. 456.
    J.-L. Lan, Y. Liu, Y.-H. Lin, C.-W. Nan, Q. Cai, and X. Yang, Sci. Rep. 5, 1 (2015).Google Scholar
  457. 457.
    Y.-C. Liu, Y.-H. Zheng, B. Zhan, K. Chen, S. Butt, B. Zhang, and Y.-H. Lin, J. Eur. Ceram. Soc. 35, 845 (2015).CrossRefGoogle Scholar
  458. 458.
    Y. Li, J. Liu, Y. Zhang, Y. Zhou, J. Li, W. Su, J. Zhai, H. Wang, and C. Wang, Ceram. Int. 42, 1128 (2016).CrossRefGoogle Scholar
  459. 459.
    A. Sotelo, F.M. Costa, N.M. Ferreira, A. Kovalevsky, M.C. Ferro, V.S. Amaral, J.S. Amaral, S. Rasekh, M.A. Torres, and M.A. Madre, J. Eur. Ceram. Soc. 36, 1025 (2016).CrossRefGoogle Scholar
  460. 460.
    A.N. Gandi, H.N. Alshareef, and U. Schwingenschlögl, Chem. Mater. 28, 1647 (2016).CrossRefGoogle Scholar
  461. 461.
    L. Gao, S. Wang, R. Liu, S. Zhai, H. Zhang, J. Wang, and G. Fu, J. Alloys Compd. 662, 213 (2016).CrossRefGoogle Scholar
  462. 462.
    M.A. Madre, F.M. Costa, N.M. Ferreira, S.I.R. Costa, S. Rasekh, M.A. Torres, J.C. Diez, V.S. Amaral, J.S. Amaral, and A. Sotelo, J. Eur. Ceram. Soc. 36, 67 (2016).CrossRefGoogle Scholar
  463. 463.
    R.B. Behram, M. Iqbal, S.M. Alay-e-Abbas, M. Sajjad, M. Yaseen, M.I. Arshad, and G. Murtaza, Mat. Sci. Semicon. Proc. 41, 297 (2016).CrossRefGoogle Scholar
  464. 464.
    R. Muhammad and Y. Iqbal, Mater. Lett. 162, 64 (2016).CrossRefGoogle Scholar
  465. 465.
    K.C. Bhamu, R. Khenata, S.A. Khan, M. Singh, and K.R. Priolkar, J. Electron. Mater. 45, 615 (2016).CrossRefGoogle Scholar
  466. 466.
    F. Delorme, C. Chen, B. Pignon, F. Schoenstein, L. Perriere, and F. Giovannelli, J. Eur. Ceram. Soc. 37, 2615 (2017).CrossRefGoogle Scholar
  467. 467.
    T. Reimann, A. Bochmann, A. Vogel, B. Capraro, S. Teichert, and J. Töpfer, J. Am. Ceram. Soc. 100, 5700 (2017).CrossRefGoogle Scholar
  468. 468.
    T. Reimann and J. Töpfer, J. Alloys Compd. 699, 788 (2017).CrossRefGoogle Scholar
  469. 469.
    S. Porokhin, L. Shvanskaya, V. Khovaylo, and A. Vasiliev, J. Alloys Compd. 695, 2844 (2017).CrossRefGoogle Scholar
  470. 470.
    J.W. Seo, J. Cha, S.O. Won, and K. Park, J. Am. Ceram. Soc. 100, 3608 (2017).CrossRefGoogle Scholar
  471. 471.
    G. Cerretti, M. Schrade, X. Song, B. Balke, H. Lu, T. Weidner, I. Lieberwirth, M. Panthöfer, T. Norby, and W. Tremel, J. Mater. Chem. A 5, 9768 (2017).CrossRefGoogle Scholar
  472. 472.
    Y. Yang, X. Liu, and X. Liang, Dalton Trans. 46, 2510 (2017).CrossRefGoogle Scholar
  473. 473.
    G. Fu, L. Gao, R. Liu, X. Zha, J. Wang, and S. Wang, Mater. Res. Express 4, 075502 (2017).CrossRefGoogle Scholar
  474. 474.
    S. Singh and S.K. Pandey, Philos. Mag. 97, 451 (2017).CrossRefGoogle Scholar
  475. 475.
    Y. Sun, C. Zhang, C. Cao, J. Fu, and L. Peng, J. Electron. Mater. 46, 5909 (2017).CrossRefGoogle Scholar
  476. 476.
    S. Saini, H.S. Yaddanapudi, K. Tian, Y. Yin, D. Magginetti, and A. Tiwari, Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
  477. 477.
    Y. Sun, C. Zhang, C. Cao, J. Fu, and L. Peng, Ceram. Int. 43, 17186 (2017).CrossRefGoogle Scholar
  478. 478.
    H.A.R. Aliabad, Z. Barzanuni, S.R. Sani, I. Ahmad, S. Jalali-Asadabadi, H. Vaezi, and M. Dastras, J. Alloys Compd. 690, 942 (2017).CrossRefGoogle Scholar
  479. 479.
    K.C. Bhamu and C.S. Praveen, J. Solid State Chem. 256, 101 (2017).CrossRefGoogle Scholar
  480. 480.
    G.E. Smith and R. Wolfe, J. Appl. Phys. 33, 841 (1962).CrossRefGoogle Scholar
  481. 481.
    W.M. Yim and A. Amith, Solid State Electron. 15, 1141 (1972).CrossRefGoogle Scholar
  482. 482.
    S. Yugo, T. Sato, and T. Kimura, Appl. Phys. Lett. 46, 842 (1985).CrossRefGoogle Scholar
  483. 483.
    T. Caillat and J.-P. Fleurial, in IEEE Proceedings on 31st Intersocial Energy Conversion Engineering Conference (1996), p. 905–909.Google Scholar
  484. 484.
    C.D.W. Jones, K.A. Regan, and F.J. DiSalvo, Phys. Rev. B 58, 16057 (1998).CrossRefGoogle Scholar
  485. 485.
    W. Liu and A.A. Balandin, J. Appl. Phys. 97, 123705 (2005).CrossRefGoogle Scholar
  486. 486.
    S. Yamaguchi, T. Matsumoto, J. Yamazaki, N. Kaiwa, and A. Yamamoto, Appl. Phys. Lett. 87, 201902 (2005).CrossRefGoogle Scholar
  487. 487.
    A. Bentien, S. Johnsen, G.K.H. Madsen, B.B. Iversen, and F. Steglich, Europhys. Lett. 80, 17008 (2007).CrossRefGoogle Scholar
  488. 488.
    B.N. Pantha, R. Dahal, J. Li, J.Y. Lin, H.X. Jiang, and G. Pomrenke, Appl. Phys. Lett. 92, 042112 (2008).CrossRefGoogle Scholar
  489. 489.
    J.-H. Bahk, Z. Bian, M. Zebarjadi, J.M.O. Zide, H. Lu, D. Xu, J.P. Feser, G. Zeng, A. Majumdar, and A.C. Gossard, Phys. Rev. B 81, 235209 (2010).CrossRefGoogle Scholar
  490. 490.
    J.M.O. Zide, J.-H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J.P. Feser, D. Xu, S.L. Singer, and Z.X. Bian, J. Appl. Phys. 108, 123702 (2010).CrossRefGoogle Scholar
  491. 491.
    H. Tong, J. Zhang, G. Liu, J.A. Herbsommer, G.S. Huang, and N. Tansu, Appl. Phys. Lett. 97, 112105 (2010).CrossRefGoogle Scholar
  492. 492.
    D.-B. Xiong, N.L. Okamoto, and H. Inui, Scripta Mater. 69, 397 (2013).CrossRefGoogle Scholar
  493. 493.
    N. Sato, Y. Matsuura, K. Kitahara, Y. Takagiwa, and K. Kimura, J. Alloys Compd. 585, 455 (2014).CrossRefGoogle Scholar
  494. 494.
    G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, H.-J. Cui, Q.-R. Zheng, and G. Su, Sci. Rep. 4, 1 (2014).Google Scholar
  495. 495.
    H.Y. Lv, W.J. Lu, D.F. Shao, and Y.P. Sun, Phys. Rev. B 90, 085433 (2014).CrossRefGoogle Scholar
  496. 496.
    C.X. Quintela, J.P. Podkaminer, M.N. Luckyanova, T.R. Paudel, E.L. Thies, D.A. Hillsberry, D.A. Tenne, E.Y. Tsymbal, G. Chen, and C.B. Eom, Adv. Mater. 27, 3032 (2015).CrossRefGoogle Scholar
  497. 497.
    Y. Zhao, Z. Dai, C. Zhang, C. Lian, S. Zeng, G. Li, S. Meng, and J. Ni, Phys. Rev. B 95, 014307 (2017).CrossRefGoogle Scholar
  498. 498.
    T. Pandey and D.S. Parker, Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
  499. 499.
    T. Zhao, Y. Sun, Z. Shuai, and D. Wang, Chem. Mater. 29, 6261 (2017).CrossRefGoogle Scholar
  500. 500.
    Y. Hiroshige, M. Ookawa, and N. Toshima, Synth. Met. 157, 467 (2007).CrossRefGoogle Scholar
  501. 501.
    F.-X. Jiang, J.-K. Xu, B.-Y. Lu, Y. Xie, R.-J. Huang, and L.-F. Li, Chin. Phys. Lett. 25, 2202 (2008).CrossRefGoogle Scholar
  502. 502.
    J. Li, X. Tang, H. Li, Y. Yan, and Q. Zhang, Synth. Met. 160, 1153 (2010).CrossRefGoogle Scholar
  503. 503.
    M. Scholdt, H. Do, J. Lang, A. Gall, A. Colsmann, U. Lemmer, J.D. Koenig, M. Winkler, and H. Boettner, J. Electron. Mater. 39, 1589 (2010).CrossRefGoogle Scholar
  504. 504.
    L. Bao-Yang, L. Cong-Cong, L. Shan, X. Jing-Kun, J. Feng-Xing, L. Yu-Zhen, and Z. Zhuo, Chin. Phys. Lett. 27, 057201 (2010).CrossRefGoogle Scholar
  505. 505.
    L. Wang, D. Wang, G. Zhu, J. Li, and F. Pan, Mater. Lett. 65, 1086 (2011).CrossRefGoogle Scholar
  506. 506.
    O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).CrossRefGoogle Scholar
  507. 507.
    Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu, and D. Zhu, Adv. Mater. 24, 932 (2012).CrossRefGoogle Scholar
  508. 508.
    J. Chen, D. Wang, and Z. Shuai, J. Chem. Theory Comput. 8, 3338 (2012).CrossRefGoogle Scholar
  509. 509.
    M. Culebras, C.M. Gomez, and A. Cantarero, J. Mater. Chem. A 2, 10109 (2014).CrossRefGoogle Scholar
  510. 510.
    S.H. Lee, H. Park, S. Kim, W. Son, I.W. Cheong, and J.H. Kim, J. Mater. Chem. A 2, 7288 (2014).CrossRefGoogle Scholar
  511. 511.
    Y. He and G. Galli, Chem. Mater. 26, 5394 (2014).CrossRefGoogle Scholar
  512. 512.
    K.J. Erickson, F. Léonard, V. Stavila, M.E. Foster, C.D. Spataru, R.E. Jones, B.M. Foley, P.E. Hopkins, M.D. Allendorf, and A.A. Talin, Adv. Mater. 27, 3453 (2015).CrossRefGoogle Scholar
  513. 513.
    C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, and G.J. Snyder, Nat. Mater. 14, 622 (2015).CrossRefGoogle Scholar
  514. 514.
    L. Sun, P.H. Jiang, H.J. Liu, D.D. Fan, J.H. Liang, J. Wei, L. Cheng, J. Zhang, and J. Shi, Carbon 90, 255 (2015).CrossRefGoogle Scholar
  515. 515.
    I. Chtioui-Gay, C. Faulmann, D. de Caro, K. Jacob, L. Valade, P. de Caro, J. Fraxedas, B. Ballesteros, E. Steven, and E.S. Choi, J. Mater. Chem. C 4, 7449 (2016).CrossRefGoogle Scholar
  516. 516.
    J. Li, Y. Du, R. Jia, J. Xu, and S.Z. Shen, Materials 10, 1 (2017).Google Scholar
  517. 517.
    L. Sun, B. Liao, D. Sheberla, D. Kraemer, J. Zhou, E.A. Stach, D. Zakharov, V. Stavila, A.A. Talin, and Y. Ge, Joule 1, 168 (2017).CrossRefGoogle Scholar
  518. 518.
    C. Li, H. Ma, and Z. Tian, Appl. Therm. Eng. 111, 1441 (2017).CrossRefGoogle Scholar
  519. 519.
    D. Huang, H. Yao, Y. Cui, Y. Zou, F. Zhang, C. Wang, H. Shen, W. Jin, J. Zhu, and Y. Diao, J. Am. Chem. Soc. 139, 13013 (2017).CrossRefGoogle Scholar
  520. 520.
    G.-D. Zhan, J.D. Kuntz, A.K. Mukherjee, P. Zhu, and K. Koumoto, Scripta Mater. 54, 77 (2006).CrossRefGoogle Scholar
  521. 521.
    L.D. Chen, X.Y. Huang, M. Zhou, X. Shi, and W.B. Zhang, J. Appl. Phys. 99, 064305 (2006).CrossRefGoogle Scholar
  522. 522.
    X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, and T. Goto, Appl. Phys. Lett. 89, 092121 (2006).CrossRefGoogle Scholar
  523. 523.
    Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Müller, S. Li, M. Toprak, and M. Muhammed, Nanotechnology 18, 235602 (2007).CrossRefGoogle Scholar
  524. 524.
    C. Yu, Y.S. Kim, D. Kim, and J.C. Grunlan, Nano Lett. 8, 4428 (2008).CrossRefGoogle Scholar
  525. 525.
    Q. Yao, L. Chen, W. Zhang, S. Liufu, and X. Chen, ACS Nano 4, 2445 (2010).CrossRefGoogle Scholar
  526. 526.
    D. Kim, Y. Kim, K. Choi, J.C. Grunlan, and C. Yu, ACS Nano 4, 513 (2010).CrossRefGoogle Scholar
  527. 527.
    K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, and R.A. Segalman, Nano Lett. 10, 4664 (2010).CrossRefGoogle Scholar
  528. 528.
    S.J. Poon, D. Wu, S. Zhu, W. Xie, T.M. Tritt, P. Thomas, and R. Venkatasubramanian, J. Mater. Res. 26, 2795 (2011).CrossRefGoogle Scholar
  529. 529.
    K.-H. Lee, H.-S. Kim, S.-I. Kim, E.-S. Lee, S.-M. Lee, J.-S. Rhyee, J.-Y. Jung, I.-H. Kim, Y. Wang, and K. Koumoto, J. Electron. Mater. 41, 1165 (2012).CrossRefGoogle Scholar
  530. 530.
    M. Estili, W.-W. Wu, M. Khazaei, and Y. Sakka, Sci. Technol. Adv. Mat. 15, 014201 (2014).CrossRefGoogle Scholar
  531. 531.
    J. Wu, Y. Sun, W.-B. Pei, L. Huang, W. Xu, and Q. Zhang, Synth. Met. 196, 173 (2014).CrossRefGoogle Scholar
  532. 532.
    Y. Du, K.F. Cai, S. Chen, P. Cizek, and T. Lin, ACS Appl. Mater. Interface 6, 5735 (2014).CrossRefGoogle Scholar
  533. 533.
    W. Zhao, H.T. Tan, L.P. Tan, S. Fan, H.H. Hng, Y.C.F. Boey, I. Beloborodov, and Q. Yan, ACS Appl. Mater. Interface 6, 4940 (2014).CrossRefGoogle Scholar
  534. 534.
    J. Peng, L. Fu, Q. Liu, M. Liu, J. Yang, D. Hitchcock, M. Zhou, and J. He, J. Mater. Chem. A 2, 73 (2014).CrossRefGoogle Scholar
  535. 535.
    T. Fukumaru, T. Fujigaya, and N. Nakashima, Sci. Rep. 5, 1 (2015).CrossRefGoogle Scholar
  536. 536.
    C. Cho, B. Stevens, J.H. Hsu, R. Bureau, D.A. Hagen, O. Regev, C. Yu, and J.C. Grunlan, Adv. Mater. 27, 2996 (2015).CrossRefGoogle Scholar
  537. 537.
    A. Dey, A. Maity, M.A.S. Khan, A.K. Sikder, and S. Chattopadhyay, RSC Adv. 6, 22453 (2016).CrossRefGoogle Scholar
  538. 538.
    H. Ju and J. Kim, J. Alloys Compd. 664, 639 (2016).CrossRefGoogle Scholar
  539. 539.
    L. Chen, X. Zeng, T.M. Tritt, and S.J. Poon, J. Electron. Mater. 45, 5554 (2016).Google Scholar
  540. 540.
    C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, and C. Song, J. Alloys Compd. 661, 389 (2016).CrossRefGoogle Scholar
  541. 541.
    T. Kodama, M. Ohnishi, W. Park, T. Shiga, J. Park, T. Shimada, H. Shinohara, J. Shiomi, and K.E. Goodson, Nat. Mater. 16, 1 (2017).CrossRefGoogle Scholar
  542. 542.
    S. Misra, M. Bharti, A. Singh, A.K. Debnath, D.K. Aswal, and Y. Hayakawa, Mater. Res. Express 4, 085007 (2017).CrossRefGoogle Scholar
  543. 543.
    N. Saxena, M. Čorić, A. Greppmair, J. Wernecke, M. Pflüger, M. Krumrey, M.S. Brandt, E.M. Herzig, and P. Müller-Buschbaum, Adv. Electron. Mater. 3, 1 (2017).CrossRefGoogle Scholar
  544. 544.
    Y. Chen, M. He, B. Liu, G.C. Bazan, J. Zhou, and Z. Liang, Adv. Mater. 29, 1 (2017).Google Scholar
  545. 545.
    G. Wang, D. Wang, X. Shi, and Y. Peng, Mod. Phys. Lett. B 31, 1 (2017).Google Scholar
  546. 546.
    K. Oshima, J. Inoue, S. Sadakata, Y. Shiraishi, and N. Toshima, J. Electron. Mater. 46, 3207 (2017).CrossRefGoogle Scholar
  547. 547.
    S. Li, T. Fan, X. Liu, F. Liu, H. Meng, Y. Liu, F. Pan, and A.C.S. Appl, Mater. Interface 9, 3677 (2017).CrossRefGoogle Scholar
  548. 548.
    W. Pengfei, Z. Pengcheng, D. Shijie, D. Bo, and L. Yao, J. Electron. Mater. 46, 2807 (2017).CrossRefGoogle Scholar
  549. 549.
    P.-A. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G.J. Snyder, and L. Chen, Energy Environ. Sci. 10, 183 (2017).CrossRefGoogle Scholar
  550. 550.
    K. Yin, X. Su, Y. Yan, H. Tang, M.G. Kanatzidis, C. Uher, and X. Tang, Scripta Mater. 126, 1 (2017).CrossRefGoogle Scholar
  551. 551.
    W. Zhao, Z. Liu, P. Wei, Q. Zhang, W. Zhu, X. Su, X. Tang, J. Yang, Y. Liu, and J. Shi, Nat. Nanotechnol. 12, 1 (2017).CrossRefGoogle Scholar
  552. 552.
    S.M. Yoon, P. Dharmaiah, H.-S. Kim, C.H. Lee, S.-J. Hong, and J.M. Koo, J. Electron. Mater. 46, 2770 (2017).CrossRefGoogle Scholar
  553. 553.
    R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M.-Y. Chou, M.T. Agne, and J. He, Energy Environ. Sci. 10, 1928 (2017).CrossRefGoogle Scholar
  554. 554.
    B. Madavali, H.-S. Kim, K.-H. Lee, and S.-J. Hong, Intermetallics 82, 68 (2017).CrossRefGoogle Scholar
  555. 555.
    E.B. Kim, P. Dharmaiah, D. Shin, K.-H. Lee, and S.-J. Hong, J. Alloys Compd. 703, 614 (2017).CrossRefGoogle Scholar
  556. 556.
    A.A. Tahrim, A. Ahmad, and M.S.M. Ali, J. Experimental Heat Transf. 31, 470 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations