Advertisement

Journal of Electronic Materials

, Volume 45, Issue 1, pp 462–472 | Cite as

Influence of Ce-Substitution on Structural, Magnetic and Electrical Properties of Cobalt Ferrite Nanoparticles

  • A. HashhashEmail author
  • M. Kaiser
Article

Abstract

Nano-crystalline samples of cerium substituted cobalt ferrites with chemical formula CoCe x Fe2−x O4 (0.0 ≤ x ≤ 0.1) were prepared using the citrate auto-combustion method. The prepared ferrites were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy spectra (FTIR), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). The XRD patterns and FTIR spectra confirm that the prepared samples reveal the formation of a single-phase spinel structure. TEM micrographs showed that the particles are made up of spherical and elongated nano-metric shapes. A limitation of the size of nanoparticles is observed as the Ce3+ concentration increases. VSM measurements showed that the coercivity H c and magnetization values M s are strongly dependent on Ce3+ content and particle size. The values of H c lie in the range of (411–1600 G), which suggest that these samples are convenient for different applications. The alternating current electrical conductivity (σ), dielectric permittivities (ɛ′, ɛ″), and dielectric loss tangent (tan δ) were studied at different ranges of frequency and temperature. The relation of conductivity with temperature revealed a semiconductor to semi-metallic behavior as cerium concentration increases. The variation in (tan δ) with frequency at different temperature shows abnormal behavior with more than one relaxation peak. The conduction mechanism used in the present study has been discussed in the light of cation–anion–cation interactions over the octahedral B-site.

Graphical Abstract

Keywords

CoCe–ferrite XRD spherical nanomaterials AC conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material 1 (AVI 76766 kb)

References

  1. 1.
    M. Hashim, Alimuddin, S. Kumar, B.H. Koo, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, and R. Kumar, J. Alloys Compd. 518, 11 (2012).CrossRefGoogle Scholar
  2. 2.
    N.G. Imam, S.M. Ismail, M. Yehia, and A. Hashhash, Int. J. Nanopart. 7, 170 (2014).CrossRefGoogle Scholar
  3. 3.
    M. Hashim, Alimuddin, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah, and R.K. Kotnala, J. Alloys Compd. 549, 348 (2013).CrossRefGoogle Scholar
  4. 4.
    V. Verma, R.K. Kotnala, V. Pandey, P.C. Kothari, L. Radhapiyari, and B.S. Matheru, J. Alloys Compd. 466, 404 (2008).CrossRefGoogle Scholar
  5. 5.
    T.J. Shinde, A.B. Gadkari, and P.M. Vasambekar, J. Alloys Compd. 513, 80 (2012).CrossRefGoogle Scholar
  6. 6.
    M.F. Al-Hilli, S. Li, and K.S. Kassim, J. Magn. Magn. Mater. 324, 873 (2012).CrossRefGoogle Scholar
  7. 7.
    G. Dixit, J. PalSingh, R.C. Srivastava, and H.M. Agrawal, J. Magn. Magn. Mater. 324, 479 (2012).CrossRefGoogle Scholar
  8. 8.
    M.S. Khandekar, N.L. Tarwal, I.S. Mull, and S.S. Suryavanshi, Ceram. Int. 40, 447 (2014).CrossRefGoogle Scholar
  9. 9.
    M.A. Malana, R.B. Qureshi, M.N. Ashiq, and Z.I. Zafar, Mater. Res. Bull. 48, 4775 (2013).CrossRefGoogle Scholar
  10. 10.
    G. Mustafa, M.U. Islam, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, and M. Ahmad, J. Alloys Compd. 618, 428 (2015).CrossRefGoogle Scholar
  11. 11.
    W.D. Penwell and J.B. Giorgi, Sens. Actuators B 191, 171 (2014).CrossRefGoogle Scholar
  12. 12.
    G. Ennas, M.F. Casula, A. Falqui, D. Gatteschi, G. Marongiu, S. Marras, G. Piccaluga, and C. Sangregorio, J. Sol-Gel. Sci. Technol. 26, 463 (2003).CrossRefGoogle Scholar
  13. 13.
    B.D. Cullity, Elements of X-Ray-Diffraction, 2nd ed, (New York: Addison Wesley Publishing, Co., 1978), vol. 89, pp. 42–46, (pp. 92–102).Google Scholar
  14. 14.
    A.A. Rodríguez-Rodríguez, O.S. Rodríguez-Fernández, J.G.O. Alarcón, and S.M. Montemayor, J. Sol-Gel. Sci. Technol. 61, 534 (2012).CrossRefGoogle Scholar
  15. 15.
    G. Mustafa, M.U. Islam, W. Zhang, Y. Jamil, M.A. Iqbal, M. Hussain, and M. Ahmad, J. Magn. Magn. Mater. 378, 409 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Kuai, Z. Zhang, and Z. Nan, J. Hazard. Mater. 250, 229 (2013).CrossRefGoogle Scholar
  17. 17.
    E.R. Kumar, R. Jayaprakash, and S. Kumar, J. Magn. Magn. Mater. 351, 70 (2014).CrossRefGoogle Scholar
  18. 18.
    S. Thankachan, B.P. Jacob, S. Xavier, and E.M. Mohammed, J. Magn. Magn. Mater. 348, 140 (2013).CrossRefGoogle Scholar
  19. 19.
    P. Thangaraj, J. Rajan, S. Durai, S. Kumar, A.R. Phani, and G. Neri, Vacuum 86, 140 (2011).CrossRefGoogle Scholar
  20. 20.
    H.M. Zaki, S.H. Al-Heniti, and T.A. Elmosalami, J. Alloys Compd. 633, 104 (2015).CrossRefGoogle Scholar
  21. 21.
    A. Dogra, M. Singh, N. Kumar, P. Sen, and R. Kumar, Nucl. Instrum. Methods Phys. Res. Sect. B 212, 190 (2003).CrossRefGoogle Scholar
  22. 22.
    M. Yehia, S.M. Ismail, and A. Hashhash, J. Supercond. Novel Magn. 27, 771 (2014).CrossRefGoogle Scholar
  23. 23.
    M.A. Amer, T.M. Meaz, S.S. Attalah, and A.I. Ghoneim, J. Magn. Magn. Mater. 363, 60 (2014).CrossRefGoogle Scholar
  24. 24.
    A.B. Gadkari, T.J. Shinde, and P.N. Vasambekar, J. Magn. Magn. Mater. 322, 3823 (2010).CrossRefGoogle Scholar
  25. 25.
    M.A. Gabal, R.S. Al-luhaibi, and Y.M. Al-Angari, J. Hazard. Mater. 246, 227 (2013).CrossRefGoogle Scholar
  26. 26.
    J.B. Goodenough, Phys. Rev. 117, 1442 (1960).CrossRefGoogle Scholar
  27. 27.
    A. Hashhash, M. Kaiser, and S.S. Ata-allah, J. Supercond. Novel Magn. 28, 2193 (2015).CrossRefGoogle Scholar
  28. 28.
    M.A. Ahmed, S.T. Bishay, R.M. Khafagy, and N.M. Saleh, J. Magn. Magn. Mater. 350, 73 (2014).CrossRefGoogle Scholar
  29. 29.
    A.A. Satter and K.M. El-shokrofy, J. Phys. IV 7, 245 (1997).Google Scholar
  30. 30.
    J.S. Zheludev, Physics of Crystalline Dielectrics, Electrical Properties, Vol. 2 (New York: Plenum Press, 1971)), p. 517.CrossRefGoogle Scholar
  31. 31.
    M.M. El-Ocker, M.A. Mostafa, H.M.T. Aly, R.L. Mohamed, and A.S.T. Saadoun, Phys. Status Solidi (a). 158, 205 (1996).CrossRefGoogle Scholar
  32. 32.
    N. Rezlescu and E. Rezlescu, Solid State Commun. 14, 69 (1974).CrossRefGoogle Scholar
  33. 33.
    R.K. Selvan, C.O. Augustin, V. Sepelak, L.J. Berchmans, C. Sanjeeviraja, and A. Gedanken, Mater. Chem. Phys. 112, 373 (2008).CrossRefGoogle Scholar
  34. 34.
    L.J. Berchmans, R.K. Selvan, and C.O. Augustin, Mater. Lett. 58, 1928 (2004).CrossRefGoogle Scholar
  35. 35.
    N. Rezlescu, C. Prakash, and G. Prasad, J. Phys. D 39, 1635 (2006).CrossRefGoogle Scholar
  36. 36.
    M.M. El-sayed, Ceram. Int. 33, 314 (2007).CrossRefGoogle Scholar
  37. 37.
    A. Hashhasha, N.G. Imam, S.M. Ismaila, and M. Yehia, J. Electron. Mater. 44, 3833 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Reactor Physics Department, Nuclear Research CenterAtomic Energy AuthorityCairoEgypt

Personalised recommendations