Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Coupling Effect of Prior Austenite Grain Size and Inclusion Characteristics on Acicular Ferrite Formation in Ti-Zr Deoxidized Low Carbon Steel

Abstract

The coupling effect of prior austenite grain size and inclusion characteristics on acicular ferrite (AF) formation was investigated in Ti-Zr deoxidized low carbon steel by utilizing the high temperature confocal laser scanning microscope (HT-CLSM), optical microscope (OM), and scanning electron microscope (SEM) equipped with energy-dispersive spectrometer (EDS). The results indicated that with the target heating temperature increased from 1100 °C to 1350 °C, the average size of prior austenite grain varied from 58.22 to 237.40 μm, and the average grain size increased rapidly when the temperature was above 1200 °C. For inclusion characteristics, different target heating temperatures had no obvious effect on inclusion types, but had a great influence on the average size and number density of each, especially for the intragranular effective inclusions. In addition, as the increase of target heating temperature, the types of microstructure were identical, but both AF volume fraction and AF relative nucleation ability increased first and then decreased. When the target heating temperature of sample was 1250 °C, the AF volume fraction reached the maximum of 49.48 pct. However, the AF relative nucleation ability reached the maximum of 474.5 at the target heating temperature 1200 °C, at this time, the AF volume fraction was 47.92 pct, only 1.56 pct smaller than that at 1250 °C. Therefore, considering the AF volume fraction and AF relative nucleation ability, the optimal target heating temperature for AF formation in this study was 1200 °C, and the corresponding prior austenite grain size was 69.58 μm.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    T. Koseki, G. Thewlis, Mater. Sci. Technol. 21, 867–879 (2005)

  2. 2.

    Y. Shao, C.X. Liu, Z.S. Yan, H.J. Li, Y.C. Liu, J. Mater. Sci. Technol. 34, 737–744 (2018)

  3. 3.

    S.S. Babu, H.K.D.H. Bhadeshia, Mater. Trans. JIM 32, 679–688 (1991)

  4. 4.

    C. Lee, H. Bhadeshia, H.C. Lee, Mater. Sci. Eng. A 360, 249–257 (2003)

  5. 5.

    Z.Z. Liu, Y. Kobayashi, F. Yin, M. Kuwabara, K. Nagai, ISIJ Int. 47, 1781–1788 (2007)

  6. 6.

    M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, E. Rahimi, Micron 45, 107–114 (2013)

  7. 7.

    M.N. Ilman, R.C. Cochrane, G.M. Evans, Weld. World 58, 1–10 (2014)

  8. 8.

    D.S. Sarma, A.V. Karasev, P.G. Jönsson, ISIJ Int. 49, 1063–1074 (2009)

  9. 9.

    W.M. Mu, P.G. Jönsson, K. Nakajima, High Temp. Mater. Proc. 36, 309–325 (2017)

  10. 10.

    D. Zhang, Y. Shintaku, S. Suzuki, Y. Komizo, J. Mater. Sci. 47, 5524–5528 (2012)

  11. 11.

    X.F. Zhang, P. Han, H. Terasaki, M. Sato, Y. Komizo, J. Mater. Sci. Technol. 28, 241–248 (2012)

  12. 12.

    J.S. Byun, J.H. Shim, Y.W. Cho, D.N. Lee, Acta Mater. 51, 1593–1606 (2003)

  13. 13.

    J.H. Shim, Y.W. Cho, S.H. Chung, J.D. Shim, D.N. Lee, Acta Mater. 47, 2751–2760 (1999)

  14. 14.

    Y. Morikage, K. Oi, F. Kawabata, K. Amano, Tetsu-to-Hagané 84, 510–515 (1998)

  15. 15.

    I. Madariaga, J.L. Romero, I. Gutiérrez, Metall. Mater. Trans. A 29A, 1003–1015 (1998)

  16. 16.

    H.H. Jin, J.H. Shim, Y.W. Cho, H.C. Lee, ISIJ Int. 43, 1111–1113 (2003)

  17. 17.

    M. Jiang, Z.Y. Hu, X.H. Wang, J.J. Pak, ISIJ Int. 53, 1386–1391 (2013)

  18. 18.

    Q. Huang, X.H. Wang, M. Jiang, Z.Y. Hu, C.W. Yang, Steel Res. Int. 87, 445–455 (2016)

  19. 19.

    T.N. Baker, Mater. Sci. Technol. Lond. 31, 265–294 (2015)

  20. 20.

    Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Z.H. Jiang, H.S. Zhang, ISIJ Int. 50, 1545–1551 (2019)

  21. 21.

    M. Wakoh, T. Sawai, S. Mizoguchi, Tetsu-to-Hagané 82, 593–598 (1996)

  22. 22.

    M. Militzer, R. Pandi, E.B. Hawbolt, Metall. Mater. Trans. A 27A, 1547–1556 (1996)

  23. 23.

    Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Y.L. Li, Z.H. Jiang, H.S. Zhang, Metall. Mater. Trans. B 50B, 2536–2546 (2019)

  24. 24.

    R.A. Farrar, Z. Zhang, S.R. Bannister, G.S. Barritte, Mater. Sci. Eng. A 28, 1385–1390 (1993)

  25. 25.

    F.J. Barbaro, P. Krauklis, K.E. Easterling, Mater. Sci. Technol. 5, 1057–1068 (1989)

  26. 26.

    D. Zhang, H. Terasaki, Y. Komizo, Acta Mater. 58, 1369–1378 (2010)

  27. 27.

    M.M. Song, B. Song, C.L. Hu, W.B. Xin, G.Y. Song, ISIJ Int. 55, 1468–1473 (2015)

  28. 28.

    Q.Y. Wang, X.D. Zou, H. Matsuura, C. Wang, Metall. Mater. Trans. B 49B, 18–22 (2018)

  29. 29.

    J.C. Sun, X.D. Zou, H. Matsuura, C. Wang, JOM 70, 946–950 (2018)

  30. 30.

    M.G. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 48B, 1915–1923 (2017)

  31. 31.

    M.G. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. A 50A, 863–873 (2019)

  32. 32.

    W.Z. Mu, N. Dogan, K.S. Coley, JOM 70, 1199–1209 (2018)

  33. 33.

    W.Z. Mu, P. Hedström, H. Shibata, P.G. Jönsson, K. Nakajima, JOM 70, 2283–2295 (2018)

  34. 34.

    T. Hanamura, H. Shibata, Y. Waseda, H. Nakajima, S. Torizuka, T. Takanashi, K. Nagai, ISIJ Int. 39, 1188–1193 (1999)

  35. 35.

    N. Kikuchi, S. Nabeshima, Y. Kishimoto, T. Matsushita, S. Sridhar, ISIJ Int. 47, 1255–1264 (2007)

  36. 36.

    W.Z. Mu, H. Shibata, P. Hedström, P.G. Jönsson, K. Nakajima, Steel Res. Int. 87, 10–14 (2016)

  37. 37.

    X.L. Wan, K.M. Wu, G. Huang, R. Wei, L. Cheng, Int. J. Min. Met. Mater. 21, 878–885 (2014)

  38. 38.

    X.B. Li, T.S. Zhang, Y. Min, C.J. Liu, M.F. Jiang, Ironmak. Steelmak. 46, 292–300 (2019)

  39. 39.

    H. Suito, A.V. Karasev, M. Hamada, R. Inoue, K. Nakajima, ISIJ Int. 51, 1151–1162 (2011)

  40. 40.

    P.A. Manohar, M. Ferry, T. Chandra, ISIJ Int. 38, 913–924 (1998)

  41. 41.

    D. Zhang, Y. Shintaku, S. Suzuki, Y. Komizo, Metall. Mater. Trans. A 43A, 447–458 (2012)

  42. 42.

    J.L. Lee, Acta Metall. Mater. 42, 3291–3298 (1994)

  43. 43.

    J.L. Lee, Y.T. Pan, ISIJ Int. 35, 1027–1033 (1995)

  44. 44.

    A. Karasev, H. Suito, Metall. Mater. Trans. B 30B, 259–270 (1999)

Download references

Acknowledgments

The authors are grateful for the support from the National Natural Science Foundation of China (No. 51874081, 51574063) and Fundamental Research Funds for the Central Universities (N150204012, N180725021).

Author information

Correspondence to Dongping Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 5, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhan, D., Lei, H. et al. Coupling Effect of Prior Austenite Grain Size and Inclusion Characteristics on Acicular Ferrite Formation in Ti-Zr Deoxidized Low Carbon Steel. Metall and Materi Trans B (2020). https://doi.org/10.1007/s11663-020-01785-0

Download citation