Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Cerium Content on Inclusions in an Ultra-Low-Carbon Aluminum-Killed Steel

  • 54 Accesses

Abstract

The effect of cerium on inclusions in an ultra-low-carbon Al-killed steel was studied at 1873 K (1600 °C) using laboratory experiments. The content of cerium in the steel varied from 0 to 0.028 wt pct. The contents of the total oxygen (T.O), total nitrogen (T.N), total sulfur (T.S), total cerium (T.Ce) and dissolved aluminum ([Al]) in the steel samples 1, 5, 10 and 30 minutes after adding cerium were measured, and inclusions were characterized using an automatic scanning electron microscope. It was found that a cerium-concentrated zone formed after the cerium alloy was added to the molten steel. Many inclusions were generated in the cerium-concentrated zone and then disappeared with the decrease of the cerium content. The variation of the inclusion composition was Al2O3 → CeAlO3 → Ce2O2S → Ce2O2S + CeS with the increasing cerium content in the steel, which agreed well with the thermodynamic analysis. The value of T.Ce/T.O was able to evaluate and predict the type of inclusions. A prediction model of the composition of inclusions was established based on thermodynamic calculation and mass balance and was validated by experimental data. When the value of T.Ce/(T.S + T.O) was ≥ 4.4, the average composition of inclusions changed little since most inclusions were fully modified.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    [1] L. Zhang, B. G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-91.

  2. 2.

    [2] H. V. Atkinson, G. Shi: Prog. Mater Sci., 2003, vol. 48, pp. 457-520.

  3. 3.

    [3] K. Zhou, H. J. Hoh, X. Wang, L. M. Keer, J. H. L. Pang, B. Song, Q. J. Wang: Mech. Mater., 2013, vol. 60, pp. 144-58.

  4. 4.

    [4] Y. Ren, L. Zhang, S. Li: ISIJ Int., 2014, vol. 54, pp. 2772-79.

  5. 5.

    [5] Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang, W. Mao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1024-34.

  6. 6.

    [6] Y. Ren, L. Zhang, P. C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2281-92.

  7. 7.

    [7] Y. Luo, A. N. Conejo, L. Zhang, L. Chen, L. Cheng: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2348-60.

  8. 8.

    [8] X. Zou, D. Zhao, J. Sun, C. Wang, H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49, pp. 481-89.

  9. 9.

    H. Torkamani, S. Raygan, C. GarciaMateo, J. Rassizadehghani, Y. Palizdar, D. SanMartin: Met. Mater. Int., 2018, vol. 24, pp. 773-88.

  10. 10.

    [10] J. Zhu, J. Xie, Z. Zhang, H. Huang: Steel Res. Int., 2018, vol. 89, pp. 1800044.

  11. 11.

    [11] J. Gao, P. Fu, H. Liu, D. Li: Metals, 2015, vol. 5, pp. 383-94.

  12. 12.

    [12] J. Lan, J. J. He, W. J. Ding, Q. D. Wang, Y. P. Zhu: ISIJ Int., 2000, vol. 40, pp. 1275-82.

  13. 13.

    [13] C. K. Hou, C. C. Liao: ISIJ Int., 2008, vol. 48, pp. 531-39.

  14. 14.

    [14] Y. Wan, W. Chen, S. Wu: J. Rare Earths, 2013, vol. 31, pp. 727-33.

  15. 15.

    [15] N. Li, Y. Wang, S. Qiu, L. Xiang: ISIJ Int., 2016, vol. 56, pp. 1256-61.

  16. 16.

    [16] S. H. Jeon, S. T. Kim, M. S. Choi, J. S. Kim, K. T. Kim, Y. S. Park: Corros. Sci., 2013, vol. 75, pp. 367-75.

  17. 17.

    [17] G. Cai, C. Li: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3989-4009.

  18. 18.

    [18] H. Yang, K. Yang, B. Zhang: Mater. Lett., 2007, vol. 61, pp. 1154-57.

  19. 19.

    [19] S. T. Kim, S. H. Jeon, I. S. Lee, Y. S. Park: Corros. Sci., 2010, vol. 52, pp. 1897-1904.

  20. 20.

    [20] A. Katsumata, H. Todoroki: CAMP-ISIJ, 2002, vol. 14, pp. 51-57.

  21. 21.

    [21] L. J. Wang, Y. Q. Liu, Q. Wang, K. C. Chou: ISIJ Int., 2015, vol. 55, pp. 970-75.

  22. 22.

    [22] H. Li, Y. C. Yu, X. Ren, S. H. Zhang, S. B. Wang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 925-34.

  23. 23.

    [23] Y. Huang, G. Cheng, S. Li, W. Dai: Steel Res. Int., 2018, vol. 89, pp. 1800371.

  24. 24.

    [24] S. K. Paul, A. K. Chakrabarty, S. Basu: Metall. Trans. B, 1982, vol. 13, pp. 185-92.

  25. 25.

    [25] W. G. Wilson, L. J. Heaslip, I. D. Sommerville: J. Met., 1985, vol. 37, pp. 36-41.

  26. 26.

    A. BedollaJacuinde, B. Hernandez: Int. J. Cast Met. Res., 2002, vol. 15, pp. 67-74.

  27. 27.

    [27] A. Vahed, D. A. R. Kay: Metall. Trans. B, 1976, vol. 7, pp. 375-83.

  28. 28.

    [28] Q. Han, C. Xiang, Y. Dong, S. Yang, D. Chen: Metall. Trans. B, 1988, vol. 19, pp. 409-18.

  29. 29.

    [29] Q. Han, X. Feng, S. Liu, H. Niu, Z. Tang: Metall. Trans. B, 1990, vol. 21, pp. 295-302.

  30. 30.

    [30] P. E. Waudby: Int. Met. Rev., 1978, vol. 23, pp. 74-98.

  31. 31.

    [31] S. K. Kwon, J. S. Park, J. H. Park: ISIJ Int., 2015, vol. 55, pp. 2589-96.

  32. 32.

    [32] J. Chen: Manual of Data and Charts Used in Steelmaking, 2nd ed, Metallurgical Industry Press, Beijing, 2010, pp. 758-61.

  33. 33.

    [33] W. Li: Iron Steel, 1986, vol. 21, pp. 7-12.

  34. 34.

    [34] L. Wang, T. Du, L. Lu, Z. Li, Y. Gai: J. Chin. Rare Earth Soc., 2003, vol. 21, pp. 251-54.

  35. 35.

    [35] J. Chen: Manual of Data and Charts Used in Steelmaking, 2nd ed, Metallurgical Industry Press, Beijing, 2010, pp. 702.

  36. 36.

    [36] L. Qin, S. Bo, G. Xingmin, Z. Mei: Chin. Rare Earths, 2001, vol. 22, pp. 31-36.

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant No. U1860206 and No. 51725402), the High Steel Center (HSC) at Yanshan University, and Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing (USTB), China.

Author information

Correspondence to Lifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 6, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Zhang, L. Effect of Cerium Content on Inclusions in an Ultra-Low-Carbon Aluminum-Killed Steel. Metall and Materi Trans B (2020). https://doi.org/10.1007/s11663-020-01779-y

Download citation