Advertisement

Metallurgical and Materials Transactions B

, Volume 51, Issue 1, pp 386–394 | Cite as

Effect of Oxygen Partial Pressure and Temperature on the Oxidation Behavior of SiB6

  • Muhammad A. Imam
  • Jacob S. Young
  • Ramana G. ReddyEmail author
Article
  • 55 Downloads

Abstract

The oxidation kinetics of silicon hexaboride (SiB6) was studied at different partial pressures of oxygen. The specific weight gain was measured at 1173 K, 1223 K, and 1273 K for \( P_{{{\text{O}}_{2} }} \) = 0.1, 0.23, and 0.33 atm using thermogravimetric analysis. The conventional empirical expressions for oxidation were observed at all selected oxygen partial pressures and temperatures. The structural characterization of the oxidation product was characterized using XRD and FT-IR, with SiB6, SiO2, B, and amorphous B2O3 observed after oxidation for 25 hours. The oxidation surface morphology was also characterized to obtain the oxidation product size, ranging from 4.54 to 24.69 µm with increasing \( P_{{{\text{O}}_{2} }} \) and temperature. The diffusional activation energy for the oxidation process was also calculated from the empirical constant, obtained from the mathematical fitting of the specific weight gain with time. The oxidation activation energies for SiB6 are 250.72, 235.64, and 232.65 kJ/mol at \( P_{{{\text{O}}_{2} }} \) = 0.1, 0.23, and 0.33 atm, respectively.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support, Grant No. DMR-1310072, of the National Science Foundation (NSF). The authors would also like to acknowledge the financial support from American Cast Iron Pipe Company (ACIPCO) and Department of Metallurgical and Materials Engineering at the University of Alabama.

References

  1. 1.
    B. Armas, C. Combescure, J. M. Dusseau, T. P. Lepetre, J. L. Robert and B. Pistoulet, Journal of the Less Common Metals 1976, vol. 47, pp. 135-140.CrossRefGoogle Scholar
  2. 2.
    Y.O. Esin, S.P. Kolesnikov, B.M. Baev and A.F. Ermakov, Journal of Structure Properties of Metallurgical Slag and Melts 1978, vol. 3, pp. 182-83.Google Scholar
  3. 3.
    A. I. Zaitsev and A. A. Kodentsov, Journal of Phase Equilibria 2001, vol. 22, pp. 126-135.CrossRefGoogle Scholar
  4. 4.
    A.K. Biletskii, A.A. Scheretskii, V.T. Vitusevich and V.T. Shumihin, Metals 1988, vol. 3, pp. 66-68Google Scholar
  5. 5.
    R. Noguchi, K. Suzuki, F. Tsukihashi and N. Sano, Metallurgical and Materials Transactions B 1994, vol. 25, pp. 903-907.CrossRefGoogle Scholar
  6. 6.
    J. Wu, W.Ma, D. Tang, B. Jia, B. Yang, D. Liu and Y. Dai, Procedia Engineering 2012, vol. 31, pp. 297-301.CrossRefGoogle Scholar
  7. 7.
    B. Armas, C. Combescure, G. Male and M. Morales, Journal of the Less Common Metals, 1979, vol. 67, pp. 449-453.CrossRefGoogle Scholar
  8. 8.
    M. A. Imam and R. G. Reddy, Metallurgical and Materials Transactions B 2018, Vol.49 (6),pp 3504–3512.CrossRefGoogle Scholar
  9. 9.
    M. A. Imam and R. G. Reddy, Metallurgical and Materials Transactions B 2018, Vol.50 (1),pp 981–990.Google Scholar
  10. 10.
    M.A. Imam and R.G. Reddy, Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, Springer, 2017, pp. 457–64.Google Scholar
  11. 11.
    M.A. Imam and R.G. Reddy, Mg Technology, Springer, 2018, pp. 173–79Google Scholar
  12. 12.
    M. A Imam and R.G. Reddy, High-Temperature Materials and Processes 2019, vol. 38, pp. pp.411-424.CrossRefGoogle Scholar
  13. 13.
    G.N. Makarenko, In Boron and Refractory Borides, ed. Vlado I. Matkovich, Springer, Berlin, 1977, pp. 310–30.Google Scholar
  14. 14.
    A. Mostafa and M. Medraj, Materials 2017, vol. 10, p. 676.CrossRefGoogle Scholar
  15. 15.
    R. W. Cahn, Advanced Materials 1991, vol. 3, pp. 628-629.Google Scholar
  16. 16.
    R. K.Bird, T.A. Wallace and S.N. Sankaran, Journal of spacecraft and rockets 2004, vol. 41, pp. 213-220.CrossRefGoogle Scholar
  17. 17.
    X. He, Y. Li, L. Wang, Y.Sun and S. Zhang, Thin Solid Films 2009, vol. 517, pp. 5120-5129.CrossRefGoogle Scholar
  18. 18.
    J. Matsushita and S. Komarneni, Materials Research Bulletin 2001, vol. 36, pp. 1083-1089.CrossRefGoogle Scholar
  19. 19.
    W. A. Tiller, Journal of The Electrochemical Society 1980, vol. 127, pp. 619-624.CrossRefGoogle Scholar
  20. 20.
    W. A. Tiller, Journal of The Electrochemical Society 1980, vol. 127, pp. 625-632.CrossRefGoogle Scholar
  21. 21.
    W. A. Tiller, Journal of the Electrochemical Society 1981, vol. 128, pp. 689-697.CrossRefGoogle Scholar
  22. 22.
    Y. Wang and M. Trenary, Chemistry of materials 1993, vol. 5, pp. 199-205.CrossRefGoogle Scholar
  23. 23.
    Y. Wang, J. Fan, and M. Trenary, Chem. Mater., 1993, vol. 5, pp. 192-198.CrossRefGoogle Scholar
  24. 24.
    E. A. Irene and R. Ghez, Applied Surface Science 1987, vol. 30, pp. 1-16.CrossRefGoogle Scholar
  25. 25.
    I. Barin, Thermochemical Data of Pure Substances. VCH, Weinheim, 1989.Google Scholar
  26. 26.
    M.L. Whittaker, H.Y. Sohn, and R.A. Cutler, J. Solid State Chem., 2013, vol. 207, pp. 163-169.CrossRefGoogle Scholar
  27. 27.
    T. W. Jason, J. C. Daniel, E. H. Morgan, L. R.Andrea, C. I. David, K. Savas, M. J. Wojciech and R. Faiz, Semiconductor Science and Technology 2016, vol. 31, p. 105007.CrossRefGoogle Scholar
  28. 28.
    A. Bongiorno and A. Pasquarello, Physical review letters 2002, vol. 88, p. 125901.CrossRefGoogle Scholar
  29. 29.
    F. J. Norton, Nature 1961, vol. 191, p. 701.CrossRefGoogle Scholar
  30. 30.
    D. L. Poerschke, M. D. Novak, N. A. Jabbar, S. Krämer and C. G. Levi, Journal of the European Ceramic Society 2016, vol. 36, pp. 3697-3707.CrossRefGoogle Scholar
  31. 31.
    D. V. Kolovertnov and I. B. Bankovskaya, Glass Phys. Chem., 2015, vol. 41, pp. 324-328.CrossRefGoogle Scholar
  32. 32.
    Y.L. Zhang, J.F. Huang, K.J. Zhu, L.Y. Cao, C.Y. Li, L. Zhou, B. Y. Zhang, W. H. Kong and B. Zhang, Appl. Surf. Sci., 2015, vol. 340, pp. 43-48.CrossRefGoogle Scholar
  33. 33.
    G. Shao, X. Wu, Y. Kong, S. Cui, X. Shen, C. Jiao and J. Jiao, Surface and Coatings Technology 2015, vol. 270, pp. 154-163.CrossRefGoogle Scholar
  34. 34.
    A. Roine, HSC Chemistry, 2013, vol. 7.Google Scholar
  35. 35.
    M. Ramachandran, D. Mantha, C. Williams and R. G. Reddy, Metallurgical and Materials Transactions A, 2011. Vol. 42, pp. 202-210.CrossRefGoogle Scholar
  36. 36.
    C. M. Carney, T. A. Parthasarathy and M. K. Cinibulk, Journal of the American Ceramic Society 2011, vol. 94, pp. 2600-2607.CrossRefGoogle Scholar
  37. 37.
    Murch, G.E., Diffusion in crystalline solids. 2012: Academic Press, New York.Google Scholar
  38. 38.
    W. Yang, W.Ao, J. Zhou, J. Liu, K. Cen and Y.Wang, Journal of Propulsion and Power 2013, vol. 29, pp. 1207-1213.CrossRefGoogle Scholar
  39. 39.
    C.H. Wen, T.M. Wu and W. J. Wei, Journal of the European Ceramic Society 2004, vol. 24, pp. 3235-3243.CrossRefGoogle Scholar
  40. 40.
    W. Kingery, Introduction to Ceramics, 2nd ed., Wiley, New York, 1976.Google Scholar
  41. 41.
    R.C. Jaeger (2001) Introduction to Microelectronic Fabrication: Modular Series on Solid State Devices. Prentice Hall, Upper Saddle River.Google Scholar
  42. 42.
    D. Yu, C.D. Kong, J.K. Zhuo, S.Q. Li and Q. Yao, Science China Technological Sciences 2015, vol. 58, pp. 2016-2024.CrossRefGoogle Scholar
  43. 43.
    J.W. Hinze, W.C. Tripp, and H.C. Graham, Systems Research Labs, Inc., Dayton, OH 1975.Google Scholar
  44. 44.
    W.C. Tripp and H.C. Graham, Journal of the Electrochemical Society 1971, vol. 118, pp. 1195-1199.CrossRefGoogle Scholar
  45. 45.
    J. B. Berkowitz‐Mattuck, Journal of the Electrochemical Society 1966, vol. 113, pp. 908-14.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations