Advertisement

Metallurgical and Materials Transactions B

, Volume 51, Issue 1, pp 258–275 | Cite as

Three-Dimensional Modeling of an Ironmaking Blast Furnace with a Layered Cohesive Zone

  • Lulu Jiao
  • Shibo KuangEmail author
  • Aibing Yu
  • Yuntao Li
  • Xiaoming Mao
  • Hui Xu
Article
  • 81 Downloads

Abstract

A three-dimensional (3D) parallel process model simulating ironmaking blast furnaces (BFs) has been developed using computational fluid dynamics (CFD). It explicitly describes the layered burden and cohesive zone (CZ), gas and liquid re-distribution near raceways, trickling liquid flow in the CZ and dripping zone, and stockline variation. The applicability of the model is confirmed by the reasonable agreement between predicted and measured in-furnace states and global performance under experimental and industrial conditions. Using this model, the 3D characteristics of in-furnace states for a 5000 m3 commercial BF with 40 tuyeres are revealed. Also, it is used to assess the commonly used slot, axisymmetric, sector and full 3D models, which may treat burden distribution as well as gas and liquid flows around raceways differently. The results reveal that the sector and full 3D models are nearly the same; the slot model over-predicts the coke rate up to 13 kg/tHM, and the axisymmetric model gives slightly higher productivity and liquid temperature. These differences are clarified by analyzing model simplifications and their impacts on in-furnace states.

Nomenclature

\( a_{{\text{FeO}}} \)

Activity of molten wustite

\( A_{\text{c}} \)

Effective surface area of coke for reaction (m2)

\( A_{\text{throat}} \)

Cross-sectional area of BF throat (m2)

\( c_{\text{p}} \)

Specific heat \( \left( {\text{J kg}^{ - 1} \text{ K}^{ - 1} } \right) \)

\( C_{{\text{SiO}_{2} }} \)

Concentration of \( \text{SiO}_{2} \)\( \left( {\text{mol m}^{ - 3} } \right) \)

\( {\text{CR}} \)

Coke rate \( \left( {\text{kg tHM}^{ - 1} } \right) \)

\( d \)

Diameter of solid phase (m)

\( D \)

Diffusion coefficient \( \left( {\text{m}^{2} \,\text{s}^{ - 1} } \right) \)

\( D_{{\text{s5}}} \)

Intra-particle diffusion coefficient of \( {\text{H}}_{ 2} \)in reduced iron phase \( \left( {\text{m}^{2} \,\text{s}^{ - 1} } \right) \)

\( E_{\text{f}} \)

Effectiveness factors of solution loss reaction by \( {\text{CO}} \)

\( E^{\prime}_{f} \)

Effectiveness factors of water-gas reaction

\( E_{{\text{gl}}} \)

Volumetric enthalpy flux between gas and liquid, \( \left( {\text{W}\,\text{m}^{ - 3} } \right) \)

\( f_{\text{o}} \)

Fraction conversion of iron ore

\( F \)

Liquid mass flow rate \( \left( {\text{kg}\,\text{s}^{ - 1} } \right) \)

\( {\mathbf{F}} \)

Interaction force per unit volume \( \left( {\text{kg m}^{ - 2} \text{ s}^{ - 2} } \right) \)

\( {\mathbf{g}} \)

Gravitational acceleration \( \left( {\text{m s}^{ - 2} } \right) \)

\( h_{ij} \)

Heat transfer coefficient between i and j phase \( \left( {\text{W m}^{ - 2} \text{ K}^{ - 1} } \right) \)

\( H \)

Enthalpy \( \left( {\text{J}\,\text{kg}^{ - 1} } \right) \)

\( \Delta H \)

Reaction heat \( \left( {\text{J}\,\text{mol}^{ - 1} } \right) \)

\( k \)

Thermal conductivity \( \left( {\text{W m}^{ - 1} \text{ K}^{ - 1} } \right) \)

\( k_{1} \)

Rate constant of indirect reduction of iron ore by \( {\text{CO}} \)\( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{2} \)

Rate constant of direction reduction of molten wustite \( \left( {\text{mol}\,\text{m}^{ - 2} \,\text{s}^{ - 1} } \right) \)

\( k_{3} \)

Rate constant of solution loss reaction by \( {\text{CO}} \)\( \left( {\text{m}^{3} \text{ kg}^{ - 1} \text{ s}^{ - 1} } \right) \)

\( k_{5} \)

Rate constant of indirect reduction of iron ore by \( {\text{H}}_{ 2} \)\( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{6} \)

Rate constant of water gas reaction \( \left( {\text{m}^{3} \text{ kg}^{ - 1} \text{ s}^{ - 1} } \right) \)

\( k_{8} \)

Rate constant of silica reduction reaction in slag \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{\text{f}} \)

Gas-film mass transfer coefficient \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{{\text{f5}}} \)

Gas-film mass transfer coefficient in indirect reduction of iron ore by\( {\text{H}}_{ 2} \)\( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{{\text{f6}}} \)

Gas-film mass transfer coefficient water–gas reaction \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( K_{1} \)

Equilibrium constant of indirect reduction of iron ore by \( {\text{CO}} \)

\( K_{5} \)

Equilibrium constant of indirect reduction of iron ore by \( {\text{H}}_{ 2} \)

\( LT \)

Liquid temperature (K)

\( m_{\text{batch}} \)

Weight for one ore layer and one coke layer (kg)

\( m_{\text{batch,ore}} \)

Weight for one ore layer (kg)

\( m_{\text{batch,coke}} \)

Weight for one coke layer (kg)

\( M_{i} \)

Molar mass of \( i{\text{th}} \) species in gas phase

\( M_{{\text{sm}}} \)

Molar mass of \( {\text{FeO}} \) or flux in solid phase \( \left( {{\text{kg}}\,{\text{mol}}^{ - 1} } \right) \)

\( N_{{\text{coke}}} \)

Number of coke particles in unit volume of bed \( \left( {\text{m}^{ - 3} } \right) \)

\( N_{{\text{ore}}} \)

Number of iron oxide particles in unit volume of bed \( \left( {\text{m}^{ - 3} } \right) \)

\( p \)

Pressure \( \left( {\text{Pa}} \right) \)

\( P \)

Productivity \( \left( {\text{tHM m}^{ - 3} \text{ day}^{ - 1} } \right) \)

\( P_{i,j} \)

Proportion of liquid flowing from ith point to jth point

\( {\text{Pe}} \)

Peclet number

\( { \Pr } \)

Prandtl number

\( R \)

Gas constant \( \left(8.314 {\text{ J mol}}^{ - 1} \text{K}^{-1} \right) \)

\( R_{k}^{*} \)

Reaction rate for \( k\text{th} \)reaction \( \left( {{\text{mol}}\,{\text{m}}^{ - 3} \,{\text{s}}^{ - 1} } \right) \)

\( {\text{Re}} \)

Reynolds number

\( S \)

Source term

\( {\text{Sc}} \)

Schmidt number

\( Sh_{r}^{ * } \)

Normalized shrinkage ratio

\( t_{\text{s}} \)

Timeline (s)

\( t_{batch} \)

Total batch time for one ore layer and one coke layer (s)

\( T \)

Temperature (K)

\( {\text{TGT}} \)

Top gas temperature (K)

\( {\text{TGUF}} \)

Top gas utilization factor (pct)

\( u_{\text{feed}} \)

Burden feed velocity \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( {\mathbf{u}} \)

Velocity \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( \overline{{\mathbf{U}}}_{\text{l}} \)

Liquid main velocity \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( {\mathbf{U}}_{\text{S}} \)

Stochastic velocity of liquid dispersion flow, \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( V_{\text{B}} \)

Bed volume (m3)

\( V_{{\text{cell}}} \)

Volume of control volume (m3)

\( y_{i} \)

Mole fraction of ith species in gas phase

\( y_{{\text{CO}}} ,y_{{\text{H}_{\text{2}} }} \)

Molar fraction of \( {\text{CO}} \) and H2

\( y_{{\text{CO}}}^{*} ,y_{{\text{H}_{\text{2}} }}^{*} \)

Molar fraction of \( {\text{CO}} \) and \( {\text{H}}_{ 2} \) in equilibrium state for indirect reaction

\( y_{{\text{CO}_{\text{2}} }} ,y_{{\text{H}_{\text{2}} \text{O}}} \)

Molar fraction of \( {\text{CO}}_{ 2} \) and H2O(g)

Greek Symbols

\( \alpha \)

Specific surface area, \( \text{m}^{2} \,\text{m}^{ - 3} \); relaxation factor; liquid dispersion angle, rad

\( \beta \)

Mass increase coefficient of fluid phase associated with reactions, \( \left( {\text{kg mol}^{ - 1} } \right) \)

\( \varGamma \)

Diffusion coefficient

\( \delta \)

Distribution coefficient

\( \varepsilon \)

Volume fraction

\( \eta \)

Fractional acquisition of reaction heat

\( {\mathbf{\rm I}} \)

Identity tensor

\( \mu \)

Viscosity \( \left( {\text{kg}\,\text{m}^{ - 1} \,\text{s}^{ - 1} } \right) \)

\( \xi_{\text{ore}} ,\xi_{\text{coke}} \)

Local ore, coke volume fraction

\( \rho \)

Density \( \left( {\text{kg}\,\text{m}^{ - 3} } \right) \)

\( \rho_{\text{bulk}} \)

Bulk density of burden at BF throat, \( \left( {\text{kg}\,\text{m}^{ - 3} } \right) \)

\( \varvec{\tau} \)

Stress tensor (Pa)

\( \varphi \)

General variable

\( \omega \)

Mass fraction

Subscripts

\( \text{e} \)

Effective

\( \text{g} \)

Gas

\( i \)

Identifier (g, s or l)

\( i\text{,}m \)

mth species in i phase

\( j \)

Identifier (g, s or l)

\( k \)

kth reaction

\( \text{l} \)

Liquid

\( \text{l,d} \)

Dynamic liquid

\( \text{sm} \)

FeO or flux in solid phase

Superscripts

\( \text{e} \)

Effective

\( \text{g} \)

Gas

\( \text{l} \)

Liquid

\( \text{s} \)

Solid

\( T \)

Transpose

Notes

Acknowledgments

The authors are grateful to the Australian Research Council (ARC) and the Baosteel Australia Research and Development Centre (BAJC) for the financial support of this work; the National Computational Infrastructure (NCI), Sunway TaihuLight, for the use of their high-performance computational facilities; and CAFFA3D for making a useful code available for free use and adaptation.

References

  1. 1.
    Y. Omori: Blast furnace phenomena and modelling. (Elsevier Science Pub. Co. Inc.,New York, NY 1987).Google Scholar
  2. 2.
    X. F. Dong, A. B. Yu, J. Yagi and P. Zulli, ISIJ Int., 2007, vol. 47, pp. 1553-70.CrossRefGoogle Scholar
  3. 3.
    S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikström, L. S. Ökvist and J.-O. Wikstrom, ISIJ Int, 2013, vol. 53, pp. 2065-71.CrossRefGoogle Scholar
  4. 4.
    Z. Y. Li, S. B. Kuang, A. Y. Yu, J. J. Gao, Y. H. Qi, D. L. Yan, Y. T. Li and X. M. Mao, Metall and Materi Trans B, 2018, vol. 49, pp. 1995-2010.CrossRefGoogle Scholar
  5. 5.
    J. Yagi, ISIJ Int., 1993, vol. 33, pp. 619-39.CrossRefGoogle Scholar
  6. 6.
    S. Ueda, S. Natsui, H. Nogami, J. Yagi and T. Ariyama, ISIJ Int., 2010, vol. 50, pp. 914-23.CrossRefGoogle Scholar
  7. 7.
    T. Ariyama, S. Natsui, T. Kon, S. Ueda, S. Kikuchi and H. Nogami, ISIJ Int., 2014, vol. 54, pp. 1457-71.CrossRefGoogle Scholar
  8. 8.
    S. B. Kuang, Z. Y. Li and A. B. Yu, Steel Res. Int., 2018, vol. 89, p. 1700071.CrossRefGoogle Scholar
  9. 9.
    T. Okosun, A. K. Silaen and C. Q. Zhou, Steel Res Int, 2019, vol. 90, p. 1900046.CrossRefGoogle Scholar
  10. 10.
    H. Nogami and J. Yagi, ISIJ Int., 2004, vol. 44, pp. 1826-34.CrossRefGoogle Scholar
  11. 11.
    H. Nogami, P. R. Austin, J.-i. Yagi and K. Yamaguchi, ISIJ Int, 2004, vol. 44, pp. 500-09.CrossRefGoogle Scholar
  12. 12.
    J. Chen, T. Akiyama, H. Nogami, J. Yagi and H. Takahashi, ISIJ Int., 1993, vol. 33, pp. 664-71.CrossRefGoogle Scholar
  13. 13.
    Z. Y. Zhou, A. B. Yu and P. Zulli, Prog. Comput. Fluid. Dy., 2004, vol. 4, pp. 39-45.CrossRefGoogle Scholar
  14. 14.
    S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and U. Tuzun, ISIJ Int., 1998, vol. 38, pp. 1311-19.CrossRefGoogle Scholar
  15. 15.
    P. R. Austin, H. Nogami and J. Yagi, ISIJ Int., 1997, vol. 37, pp. 748-55.CrossRefGoogle Scholar
  16. 16.
    H. Nogami, Y. Kashiwaya and D. Yamada, ISIJ Int., 2012, vol. 52, pp. 1523-27.CrossRefGoogle Scholar
  17. 17.
    S. J. Chew, P. Zulli and A. B. Yu, ISIJ Int., 2001, vol. 41, pp. 1112-21.CrossRefGoogle Scholar
  18. 18.
    G. X. Wang, S. J. Chew, A. B. Yu and P. Zulli, Metall. Mater. Trans. B, 1997, vol. 28, pp. 333-43.CrossRefGoogle Scholar
  19. 19.
    G. X. Wang, J. D. Litster and A. B. Yu, ISIJ Int., 2000, vol. 40, pp. 627-36.CrossRefGoogle Scholar
  20. 20.
    J. A. de Castro, H. Nogami and J. Yagi, ISIJ Int., 2000, vol. 40, pp. 637-46.CrossRefGoogle Scholar
  21. 21.
    Y. Hashimoto, Y. Sawa, Y. Kitamura, T. Nishino and M. Kano, ISIJ Int, 2018, vol. 58, pp. 2210-18.CrossRefGoogle Scholar
  22. 22.
    X. F. Dong, A. B. Yu, S. J. Chew and P. Zulli, Metall. Mater. Trans. B, 2010, vol. 41, pp. 330-49.CrossRefGoogle Scholar
  23. 23.
    K. Yang, S. Choi, J. Chung and J. Yagi, ISIJ Int, 2010, vol. 50, pp. 972-80.CrossRefGoogle Scholar
  24. 24.
    D. Fu, Y. Chen, Y. F. Zhao, J. D’Alessio, K. J. Ferron and C. Q. Zhou, Appl. Therm. Eng., 2014, vol. 66, pp. 298-308.CrossRefGoogle Scholar
  25. 25.
    P. Zhou, H. L. Li, P. Y. Shi and C. Q. Zhou, Appl. Therm. Eng., 2016, vol. 95, pp. 296-302.CrossRefGoogle Scholar
  26. 26.
    S. B. Kuang, Z. Y. Li, D. L. Yan, Y. H. Qi and A. B. Yu, Miner. Eng., 2014, vol. 63, pp. 45-56.CrossRefGoogle Scholar
  27. 27.
    J. A. de Castro, A. J. da Silva, Y. Sasaki and J. Yagi, ISIJ Int., 2011, vol. 51, pp. 748-58.CrossRefGoogle Scholar
  28. 28.
    X. F. Dong, S. J. Zhang, D. Pinson, A. B. Yu and P. Zulli, Powder Technol., 2004, vol. 149, pp. 10-22.CrossRefGoogle Scholar
  29. 29.
    L. Shao and H. Saxén, ISIJ Int., 2013, vol. 53, pp. 988-94.CrossRefGoogle Scholar
  30. 30.
    D. Rangarajan, T. Shiozawa, Y. S. Shen, J. S. Curtis and A. B. Yu, Ind. Eng. Chem. Res., 2014, vol. 53, pp. 4983-90.CrossRefGoogle Scholar
  31. 31.
    M. Y. Gu, G. Chen, M. C. Zhang, D. Huang, P. Chaubal and C. Q. Zhou, Appl. Math. Model., 2010, vol. 34, pp. 3536-46.CrossRefGoogle Scholar
  32. 32.
    J. A. de Castro, H. Nogami and J. Yagi, ISIJ Int., 2002, vol. 42, pp. 44-52.CrossRefGoogle Scholar
  33. 33.
    K. Takatani, T. Inada and Y. Ujisawa, ISIJ Int., 1999, vol. 39, pp. 15-22.CrossRefGoogle Scholar
  34. 34.
    P. R. Austin, H. Nogami and J. Yagi, ISIJ Int., 1997, vol. 37, pp. 458-67.CrossRefGoogle Scholar
  35. 35.
    S. J. Chew, P. Zulli and A. B. Yu, ISIJ Int., 2001, vol. 41, pp. 1122-30.CrossRefGoogle Scholar
  36. 36.
    Z. Y. Li, S. B. Kuang, D. L. Yan, Y. H. Qi and A. B. Yu, Metall. Mater. Trans. B, 2017, vol. 48, pp. 602-18.CrossRefGoogle Scholar
  37. 37.
    Y. S. Shen, B. Y. Guo, S. Chew, P. Austin and A. B. Yu, Metall Mater Trans B, 2015, vol. 46, pp. 432-48.CrossRefGoogle Scholar
  38. 38.
    H. Zhao, M. Zhu, P. Du, S. Taguchi and H. Wei, ISIJ Int., 2012, vol. 52, pp. 2177-85.CrossRefGoogle Scholar
  39. 39.
    G. Zhao, S. Cheng, W. Xu and C. Li, ISIJ Int, 2015, vol. 55, pp. 2566-75.CrossRefGoogle Scholar
  40. 40.
    J. Xu, S. Wu, M. Kou, L. Zhang and X. Yu, Appl Math Model, 2011, vol. 35, pp. 1439-55.CrossRefGoogle Scholar
  41. 41.
    A. Polinov, A. Pavlov, O. Onorin, N. Spirin and I. Gurin, Metallurgist, 2018, 62, 418-24.CrossRefGoogle Scholar
  42. 42.
    K. Nishioka, Y. Ujisawa and K. Takatani, Nippon Steel & Sumitomo Metal Technical Report No. 120 2018.Google Scholar
  43. 43.
    Z. Y. Li, S. B. Kuang, S. D. Liu, J. Q. Gan, A. B. Yu, Y. T. Li and X. M. Mao, Powder Technol., 2019, vol. 353, pp. 385-97.CrossRefGoogle Scholar
  44. 44.
    S. Natsui, T. Kikuchi and R. O. Suzuki, Metall and Materi Trans B, 2014, vol. 45, pp. 2395-413.CrossRefGoogle Scholar
  45. 45.
    T. Kon, S. Natsui, S. Ueda and H. Nogami, ISIJ Int., 2015, vol. 55, pp. 1284-90.CrossRefGoogle Scholar
  46. 46.
    S. Natsui, T. Kikuchi, R. O. Suzuki, T. Kon, S. Ueda and H. Nogami, ISIJ Int., 2015, vol. 55, pp. 1259-66.CrossRefGoogle Scholar
  47. 47.
    S. Natsui, K.-i. Ohno, S. Sukenaga, T. Kikuchi and R. O. Suzuki, ISIJ Int., 2018, vol. 58, pp. 282-91.CrossRefGoogle Scholar
  48. 48.
    S. Natsui, A. Sawada, T. Kikuchi and R. O. Suzuki, ISIJ Int., 2018, vol. 58, pp. 1742-44.CrossRefGoogle Scholar
  49. 49.
    S. Natsui, A. Sawada, K. Terui, Y. Kashihara, T. Kikuchi and R. O. Suzuki, ETSU TO HAGANE, 2018, vol. 104, pp. 347-57.CrossRefGoogle Scholar
  50. 50.
    S. Natsui, A. Sawada, K. Terui, Y. Kashihara, T. Kikuchi and R. O. Suzuki, Chem Eng Sci, 2018, vol. 175, pp. 25-39.CrossRefGoogle Scholar
  51. 51.
    J. Ferziger and M. Peric: Computational Methods for Fluid Dynamics. 3rd ed. (Springer, New York, 2002).CrossRefGoogle Scholar
  52. 52.
    Y. S. Shen, B. Y. Guo, A. B. Yu, P. R. Austin and P. Zulli, Fuel, 2011, vol. 90, pp. 728-38.CrossRefGoogle Scholar
  53. 53.
    S.-i. Nomura, T Iron Steel I Jpn, 1986, vol. 26, pp. 107-13.CrossRefGoogle Scholar
  54. 54.
    G. Usera, A. Vernet and J. Ferré, Flow Turbul and Combust, 2008, vol. 81, pp. 471-95.CrossRefGoogle Scholar
  55. 55.
    S. Natsui, S. Ueda, Z. Fan, N. Andersson, J. Kano, R. Inoue and T. Ariyama, ISIJ Int., 2010, vol. 50, pp. 207-14.CrossRefGoogle Scholar
  56. 56.
    H. Takahashi, M. Tanno and J. Katayama, ISIJ Int., 1996, vol. 36, pp. 1354-59.CrossRefGoogle Scholar
  57. 57.
    Z. Zhou, H. Zhu, A. Yu, B. Wright, D. Pinson and P. Zulli, ISIJ Int., 2005, vol. 45, pp. 1828-37.CrossRefGoogle Scholar
  58. 58.
    S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and P. Austin, Appl. Math. Model., 2002, vol. 26, pp. 141-54.CrossRefGoogle Scholar
  59. 59.
    I. Muchi, Trans. ISIJ, 1967, vol. 7, pp. 223-37.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Lulu Jiao
    • 1
  • Shibo Kuang
    • 1
    Email author
  • Aibing Yu
    • 1
  • Yuntao Li
    • 2
  • Xiaoming Mao
    • 2
  • Hui Xu
    • 3
  1. 1.ARC Research Hub for Computational Particle Technology, Department of Chemical EngineeringMonash UniversityClaytonAustralia
  2. 2.Ironmaking Division, Research Institute (R&D Center)Baoshan Iron & Steel Co., LtdShanghaiP.R. China
  3. 3.Ironmaking PlantBaoshan Iron & Steel Co., LtdShanghaiP.R. China

Personalised recommendations