Advertisement

A Comparison of the Use of Ultrasonic Melt Treatment and Mechanical Vibration in the Manufacture of Al5Si5Zn Alloy Feedstock for Thixoforming

  • C. T. W. Proni
  • G. L. Brollo
  • E. J. ZoquiEmail author
Article
  • 19 Downloads

Abstract

The use of physical agents when casting aluminum alloys has proven to be an effective route for grain refinement and avoids the inconvenience of residual impurities left in the material when chemical agents are used. The application of ultrasonic waves to the molten metal before casting generates acoustic cavitation, which promotes extensive heterogeneous nucleation and contributes to degassing of the metal. In addition, the application of mechanical vibration during solidification has been proven to promote dendrite fragmentation, and therefore, grain refinement. The aim of this work is to evaluate microstructural refinement due to cavitation produced by ultrasonic melt treatment (UST) of Al5Si5Zn alloy (Al-5wt pctSi-5wt pctZn) and to compare the resulting microstructure with that achieved with and without simple mechanical vibration (MV) during casting so that the best manufacturing procedure for refining aluminum silicon feedstock for subsequent thixoforming can be identified. After casting, the alloy produced under each condition was partially melted to a 0.45 solid fraction to obtain a primary phase with a spheroidized microstructure. The rheological behavior of each semisolid slurry was also evaluated. Microstructural characterization was performed using optical and scanning electron microscopy. Mechanical performance was evaluated by means of tensile tests and hardness measurements. The use of ultrasonic stirring for 30 seconds resulted in slightly better mechanical performance than the other casting conditions. However, because of the short life expectancy of the sonotrodes, mechanical vibration can be considered a simpler, superior solution for feedstock production.

Notes

Acknowledgments

The authors would like to thank the Brazilian research funding agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—Project 2015/22143-3), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—PQ 304921/2017-3) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001) for providing financial support for this study. The authors are also indebted to the Faculty of Mechanical Engineering at the University of Campinas and Sonitron Ultra Sônica Ltda.

References

  1. 1.
    M.C. Flemings: Metall. Trans. A, 1991, vol. 22A, pp. 957-981.  https://doi.org/10.1007/bf02661090 CrossRefGoogle Scholar
  2. 2.
    D.H. Kirkwood, M. Suéry, P. Kapranos, H.V. Atkinson and K.P. Young: Semi-Solid Processing of Alloys, Springer Series in Materials Science 124, Springer, Heidelberg, London, 2010, pp. 14–47.  https://doi.org/10.1007/978-3-642-00706-4 CrossRefGoogle Scholar
  3. 3.
    D. Liu, H.V. Atkinson, and H. Jones: Acta Mater., 2005, vol. 53, pp. 3807-3819.  https://doi.org/10.1016/j.actamat.2005.04.028 CrossRefGoogle Scholar
  4. 4.
    D. Zhang, H.V. Atkinson, H. Dong and K. Zhu: Metall. and Mater. Trans. A, 2017, vol. 48, pp. 4701-4712.  https://doi.org/10.1007/s11661-017-4235-2 CrossRefGoogle Scholar
  5. 5.
    E.J. Zoqui, D.M Benati, C.T.W. Proni, and L.V. Torres: Calphad, 2016, vol. 52, pp. 98-109.  https://doi.org/10.1016/j.calphad.2015.12.006 CrossRefGoogle Scholar
  6. 6.
    G.L. Brollo, D.V. Tamayo, L.V. Torres and E.J. Zoqui: Calphad, 2019, 67, 101671.  https://doi.org/10.1016/j.calphad.2019.101671 CrossRefGoogle Scholar
  7. 7.
    D.H. Kirkwood: Int. Mater. Rev., 1994, Vol. 39-5, pp. 173-189.  https://doi.org/10.1179/imr.1994.39.5.173 CrossRefGoogle Scholar
  8. 8.
    V. Laxmanan and M.C. Flemings: Metall. Trans. A, 1980, Vol. 11A, pp. 1927-1937.  https://doi.org/10.1007/bf02655112 CrossRefGoogle Scholar
  9. 9.
    A. Ohno: Solidification – The Separation Theory and its Practical Applications, Springer-Verlag Berlin Heidelberg, New York, 1987, pp. 15-57.Google Scholar
  10. 10.
    F. Taghavi, H. Saghafian, and Y.H.K. Kharrazi: Mater. and Design, 2009, Vol. 30, pp. 1604–1611.  https://doi.org/10.1016/j.matdes.2008.07.032.CrossRefGoogle Scholar
  11. 11.
    C.T.W. Proni, M.H. Robert, and E.J. Zoqui: Arch. Mater. Sci. Eng., 2015, 73 (2), pp. 82-93Google Scholar
  12. 12.
    G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts. Gordon and Breach Science Publishers, Amsterdam, 1998, pp. 18-240.CrossRefGoogle Scholar
  13. 13.
    T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman: Metall. Mater. Trans. A, 2010, 41A (8): 2056-2066.  https://doi.org/10.1007/s11661-010-0232-4 CrossRefGoogle Scholar
  14. 14.
    Y.I. Frenkel: Kinetic Theory of Liquid. Dover Publications, New York, 1959, pp. 170-488.Google Scholar
  15. 15.
    G.I. Eskin: Ultrasonics Sonochemistry, 2001, Vol. 8(3), pp.319-325.  https://doi.org/10.1016/s1350-4177(00)00074-2 CrossRefGoogle Scholar
  16. 16.
    Q. Han: Metall. and Mater. Trans. B, 2015, Vol. 46B, pp.1603-1614.  https://doi.org/10.1007/s11663-014-0266-x CrossRefGoogle Scholar
  17. 17.
    C.T.W. Proni, L.C. de Paula, L.V. Torres, and E.J. Zoqui: Solid State Phen. 2019, Vol. 285, pp. 339-344.  https://doi.org/10.4028/www.scientific.net/ssp.285.339 CrossRefGoogle Scholar
  18. 18.
    C.T.W. Proni and E.J. Zoqui: Int. J. Mater. Res., 2017, 108(3) pp 228-236.  https://doi.org/10.3139/146.111472.CrossRefGoogle Scholar
  19. 19.
    ASTM E8/E8M-16: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016. www.astm.org,  https://doi.org/10.1520/e0008_e0008m-16a. Accessed 24 Mar 2016.
  20. 20.
    E.J. Zoqui, M.T. Shehata, M. Paes, V. Kao and E. Es-Sadiqi: Mater. Sci. Eng. A, 2002, 325, pp. 38-53.  https://doi.org/10.1016/s0921-5093(01)01401-0.CrossRefGoogle Scholar
  21. 21.
    ASTM E112-13: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013. www.astm.org,  https://doi.org/10.1520/e0112-13. Accessed 1 Aug 2018.
  22. 22.
    N.A. Baena, T. Pabel, N.V. Sierra and D. Eskin: Mater Sci Forum, 2013, Vol. 765 pp 271-275.  https://doi.org/10.4028/www.scientific.net/msf.765.271 CrossRefGoogle Scholar
  23. 23.
    L.C. de Paula and E.J. Zoqui: SN Applied Sciences, 2019, Vol. 1, pp. 394-409.  https://doi.org/10.1007/s42452-019-0399-2.CrossRefGoogle Scholar
  24. 24.
    ASM Handbook: Metallography and Microstructures, ASM Int., 2004. vol. IX. pp. 107–112. ISBN: 978-0-87170-706-2Google Scholar
  25. 25.
    J. E. Hatch: Aluminium: properties and physical metallurgy, Ohio: American Society for Metals, 1984. pp. 154-424.Google Scholar
  26. 26.
    L. Zhang, D. G. Eskin, and L. Katgerman: J. Mater. Sci., 2011, 46: 5252–5259.  https://doi.org/10.1007/s10853-011-5463-2 CrossRefGoogle Scholar
  27. 27.
    F. Czerwinski: Metall. Mater. Trans. B, 2018, 49(6), 3220-3257.  https://doi.org/10.1007/s11663-018-1387-4 CrossRefGoogle Scholar
  28. 28.
    K.N. Campo and E.J. Zoqui: Metall. Mater. Trans. A, 2016, 47(4): 1792-1802.  https://doi.org/10.1007/s11661-016-3339-4 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Materials and Manufacturing Department, School of Mechanical EngineeringUniversity of Campinas – UNICAMPCampinasBrazil

Personalised recommendations