Metallurgical and Materials Transactions B

, Volume 51, Issue 1, pp 200–212 | Cite as

Formation and Deformation Mechanism of Al2O3-CaS Inclusions in Ca-Treated Non-Oriented Electrical Steels

  • Qiang Ren
  • Wen YangEmail author
  • Lin Cheng
  • Lifeng ZhangEmail author
  • Alberto N. Conejo


Industrial trials were performed to study the effect of calcium treatment on inclusions in non-oriented electrical steels. The evolution and characterization of inclusions in both molten steel and rolled steel were investigated, including a thermodynamic analysis using FactSage 7.1. In the Ca-treated steel, alumina inclusions were transformed into Al2O3-CaO-CaS, with a mass fraction of CaO that increased with increasing the Ca/S ratio. Inclusions of Al2O3-CaO-CaS were classified into wrapping and adhesion type according to their morphologies. Adhesion-type Al2O3-CaO-CaS inclusions were observed only in the steel with Ca/S > 0.84. The two types of Al2O3-CaO-CaS inclusions were transformed into Al2O3-CaS with distinctive morphologies. The mass fraction of Al2O3 and CaS in the inclusions was experimentally found to depend on the Ca/S ratio of the steel and confirmed by thermodynamic analysis. The two types of Al2O3-CaS inclusions could hardly be deformed during the hot-rolling process of the steel but showed different deformation behavior during the cold-rolling process of the steel. The component of CaS in the adhesion-type Al2O3-CaS inclusions was more easily separated from Al2O3 and formed a tail along the rolling direction of the steel, while only a little part of the CaS component broke off from the wrapping-type Al2O3-CaS inclusions.



The authors are grateful for the support from the National Science Foundation China (Grant Nos. U1860206 and 51725402), Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), and High Quality Steel Consortium (HQSC), School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing (USTB), China.


  1. 1.
    1.H. Shimanaka, Y. Ito, K. Matsumara, and B. Fukuda: J. Magn. Magn. Mater., 1982, vol. 26, pp. 57–64.CrossRefGoogle Scholar
  2. 2.
    2.L.J. Dijkstra and C. Wert: Phys. Rev., 1950, vol. 79, pp. 979–85.CrossRefGoogle Scholar
  3. 3.
    3.P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913–24.CrossRefGoogle Scholar
  4. 4.
    4.K. Matsumura and B. Fukuda: IEEE Trans. Magn., 1984, vol. 20, pp. 1533–38.CrossRefGoogle Scholar
  5. 5.
    5.Q. Ren, L. Zhang, and W. Yang: Steel Res. Int., 2018, vol. 89, art. no. 1800047.CrossRefGoogle Scholar
  6. 6.
    6.Y. Kurosaki, M. Shiozaki, K. Higashine, and M. Sumimoto: ISIJ Int., 1999, vol. 39, pp. 607–13.CrossRefGoogle Scholar
  7. 7.
    7.F.J. Li, H.G. Li, Y. Wu, D. Zhao, B.W. Peng, H.F. Huang, S.B. Zheng, and J.L. You: J. Mater. Res., 2017, vol. 32, pp. 2307–14.CrossRefGoogle Scholar
  8. 8.
    8.K. Jenkins and M. Lindenmo: J. Magn. Magn. Mater., 2008, vol. 320, pp. 2423–29.CrossRefGoogle Scholar
  9. 9.
    9.H. Yashiki and T. Kaneko: ISIJ Int., 1990, vol. 30, pp. 325–30.CrossRefGoogle Scholar
  10. 10.
    10.C.K. Hou: J. Magn. Magn. Mater., 2008, vol. 320, pp. 1115–22.CrossRefGoogle Scholar
  11. 11.
    11.Y. Oda, Y. Tanaka, A. Chino, and K. Yamada: J. Magn. Magn. Mater., 2003, vols. 254–255, pp. 361–63.CrossRefGoogle Scholar
  12. 12.
    12.T. Nakayama, N. Honjou, T. Minaga, and H. Yashiki: J. Magn. Magn. Mater., 2001, vol. 234, pp. 55–61.CrossRefGoogle Scholar
  13. 13.
    13.W. Yang, L. Zhang, X. Wang, Y. Ren, X. Liu, and Q. Shan: ISIJ Int., 2013, vol. 53, pp. 1401–10.CrossRefGoogle Scholar
  14. 14.
    14.Y. Liu, L.F. Zhang, Y. Zhang, H.J. Duan, Y. Ren, and W. Yang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 610–26.CrossRefGoogle Scholar
  15. 15.
    15.L.F. Zhang, Y. Liu, Y. Zhang, W. Yang, and W. Chen: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1841–59.CrossRefGoogle Scholar
  16. 16.
    16.L.E.K. Holappa and A.S. Helle: J. Mater. Process. Technol., 1995, vol. 53, pp. 177–86.CrossRefGoogle Scholar
  17. 17.
    17.M. Lind and L. Holappa: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 359–66.CrossRefGoogle Scholar
  18. 18.
    18.Y. Tomita: J. Mater. Sci., 1994, vol. 29, pp. 2873–78.CrossRefGoogle Scholar
  19. 19.
    19.F. Zhang, L. Miao, Z. Zong, B. Wang, Y. Zhang, and M.A. Zhigang: Baosteel Technol. Res., 2013, vol. 7, pp. 12–19.Google Scholar
  20. 20.
    20.Y. Wan, S. Wu, and J. Li: Metall. Res. Technol., 2016, vol. 113, art. no. 101.CrossRefGoogle Scholar
  21. 21.
    21.Y. Guo, K. Cai, Z. Luo, L. Liu, and Z. Liu: J. Univ. Sci. Technol. Beijing, 2005, vol. 27, pp. 427–30.Google Scholar
  22. 22.
    22.N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S.R. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720–29.CrossRefGoogle Scholar
  23. 23.
    23.Y. Ren, L. Zhang, and S. Li: ISIJ Int., 2014, vol. 54, pp. 2772–79.CrossRefGoogle Scholar
  24. 24.
    24.J. Xu, F. Huang, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1217–27.CrossRefGoogle Scholar
  25. 25.
    Q. Ren, W. Yang, L. Cheng, Z. Hu, and L. Zhang: J. Magn. Magn. Mater. 2019, vol. 494, art. no. 165803.CrossRefGoogle Scholar
  26. 26.
    26.Y. Chu, W. Li, Y. Ren, and L. Zhang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2047–62.CrossRefGoogle Scholar
  27. 27.
    27.G. Cheng, W. Li, X. Zhang, and L. Zhang: Metals, 2019, vol. 9, art. no. 642.CrossRefGoogle Scholar
  28. 28.
    28.A. Segal and J.A. Charles: Met. Technol., 1977, vol. 4, pp. 177–82.CrossRefGoogle Scholar
  29. 29.
    29.J. Guo, S.S. Cheng, Z.J. Cheng, and L. Xin: Steel Res. Int., 2013, vol. 84, pp. 545–53.CrossRefGoogle Scholar
  30. 30.
    30.G. Xu, Z. Jiang, and Y. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2411–20.CrossRefGoogle Scholar
  31. 31.
    31.D. Zhao, H. Li, C. Bao, and J. Yang: ISIJ Int., 2015, vol. 55, pp. 2115–24.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology Beijing (USTB)BeijingChina
  2. 2.Research and Development DepartmentShougang Zhixin Qian’an Electromagnetic Material Co. LtdQian’anChina
  3. 3.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations