Cathodoluminescence Analysis of Nonmetallic Inclusions in Steel Deoxidized and Desulfurized by Rare-Earth Metals (La, Ce, Nd)

  • Susumu ImashukuEmail author
  • Kazuaki Wagatsuma


The injection of misch metal, which primarily consists of La, Ce, and Nd, into molten steel can reduce the size of nonmetallic inclusions, suppress the formation of harmful nonmetallic inclusions, and reduce the content of oxygen and sulfur in steel. To investigate the impact of misch metal on these effects, we propose a method for identifying inclusions in steel that has been deoxidized and desulfurized by misch metal using cathodoluminescence (CL) analysis within 1 minute. Based on the CL images and spectra of model steel samples that were deoxidized and desulfurized by La, Ce, or Nd metal, we demonstrate that La2O3, La2O2S, CeO2, Ce2O2S, Nd2O3, and Nd2O2S inclusions can be identified by the emitted luminescence color using cameras with sensitivity ranges of 420 to 680 and 350 to 1000 nm. La2O3, La2O2S, CeO2, Ce2O2S, Nd2O3, and Nd2O2S inclusions emitted blue-green, yellow-orange, yellow-orange, violet, blue-violet, and red luminescence, respectively when observed by a camera with a sensitivity range of 420 to 680 nm. CeO2 and Nd2O3 inclusions emitted red-orange and red-violet luminescence, respectively when observed by a camera with a sensitivity range of 350 to 1000 nm.



This work was supported by JSPS KAKENHI [Grant No. 17H03435].

Supplementary material

11663_2019_1732_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (PDF 2338 kb)


  1. 1.
    H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528–36.CrossRefGoogle Scholar
  2. 2.
    H.V. Atkinson and G. Shi: Prog. Mater Sci., 2003, vol. 48, pp. 457–520.CrossRefGoogle Scholar
  3. 3.
    L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271–91.CrossRefGoogle Scholar
  4. 4.
    L. Zhang and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 733–61.CrossRefGoogle Scholar
  5. 5.
    Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang and W. Mao: Mater. Trans. B, 2016, vol. 47, pp. 1024–34.CrossRefGoogle Scholar
  6. 6.
    P. Rocabois, J.N. Pontoire, J. Lehmann and H. Gaye: J. Non-Cryst. Solids, 2001, vol. 282, pp. 98–109.CrossRefGoogle Scholar
  7. 7.
    Y. Ren, L. Zhang, W. Fang and H. Duan: Mater. Trans. B, 2014, vol. 45, pp. 2057–71.CrossRefGoogle Scholar
  8. 8.
    S.K. Paul, A.K. Chakrabarty and S. Basu: Metall. Trans. B, 1982, vol. 13, pp. 185–92.CrossRefGoogle Scholar
  9. 9.
    H. Ha, C. Park and H. Kwon: Scripta Mater., 2006, vol. 55, pp. 991–94.CrossRefGoogle Scholar
  10. 10.
    S.-T. Kim, S.-H. Jeon, I.-S. Lee and Y.-S. Park: Corros. Sci., 2010, vol. 52, pp. 1897–1904.CrossRefGoogle Scholar
  11. 11.
    Q. Ma, C. Wu, G. Cheng and F. Li: Mater. Today Proc., 2015, vol. 2S, pp. S300–05.CrossRefGoogle Scholar
  12. 12.
    M.M. Song, B. Song, W.B. Xin, G.L. Sun, G.Y. Song and C.L. Hu: Ironmak. Steelmak., 2015, vol. 42, pp. 594–99.CrossRefGoogle Scholar
  13. 13.
    F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh and W.S. Hwang: Materials, 2016, vol. 9 pp. 417.CrossRefGoogle Scholar
  14. 14.
    L. Wang, Q. Lin, J. Ji and D. Lan: J. Alloys Compd., 2006, vol. 408-412, pp. 384–86.CrossRefGoogle Scholar
  15. 15.
    Y.C. Yu, S.H. Zhang and S.B. Wang: High Temp. Mater. Proc., 2018, vol. 37, pp. 807–14.CrossRefGoogle Scholar
  16. 16.
    M. Fernandes, J.C. Pires, N. Cheung and A. Garcia: Mater. Charact., 2003, vol. 51, pp. 301–08.CrossRefGoogle Scholar
  17. 17.
    Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S.N. Lekakh and K. Peaslee: Mater. Trans. B, 2014, vol. 45, pp. 1291–1303.CrossRefGoogle Scholar
  18. 18.
    S. Imashuku, K. Ono and K. Wagatsuma: X-Ray Spectrom., 2017, vol. 46, pp. 131–35.CrossRefGoogle Scholar
  19. 19.
    S. Imashuku, K. Ono, R. Shishido, S. Suzuki and K. Wagatsuma: Mater. Charact., 2017, vol. 131, pp. 210–16.CrossRefGoogle Scholar
  20. 20.
    S. Imashuku, K. Ono and K. Wagatsuma: Microsc. Microanal., 2017, vol. 23, pp. 1143–49.CrossRefGoogle Scholar
  21. 21.
    S. Imashuku and K. Wagatsuma: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2868–74.CrossRefGoogle Scholar
  22. 22.
    S. Imashuku and K. Wagatsuma: Surf. Interface Anal., 2019, vol. 51, pp. 31–34.CrossRefGoogle Scholar
  23. 23.
    S. Imashuku and K. Wagatsuma: X-Ray Spectrom., 2019, vol. 48, pp. 522–26.CrossRefGoogle Scholar
  24. 24.
    H. Tsuneda, S. Imashuku and K. Wagatsuma: Tetsu-to-Hagané, 2019, vol. 105, pp. 522–29.CrossRefGoogle Scholar
  25. 25.
    S. Imashuku, H. Tsuneda, and K. Wagatsuma: Metall. Mater. Trans. B, 2019.
  26. 26.
    S. Imashuku and K. Wagatsuma: Corros. Sci., 2019, vol. 154, pp. 226–30.CrossRefGoogle Scholar
  27. 27.
    T. Nakajima, H. Kawaguchi, K. Takashima and Y. Ouchi: J. Spectosc. Soc. Jpn., 1969, vol. 18, pp. 210–17.CrossRefGoogle Scholar
  28. 28.
    C.W. Struck and W.H. Fonger: J. Appl. Phys., 1971, vol. 42, pp. 4515–16.CrossRefGoogle Scholar
  29. 29.
    X. Wang, J.-G. Li, M.S. Molokeev, Q. Zhu, X. Li and X. Sun: Chem. Eng. J., 2016, vol. 302, pp. 577–86.CrossRefGoogle Scholar
  30. 30.
    S. Mochizuki and F. Fujishiro: Phys. Status Solidi B, 2009, vol. 246, pp. 2320–28.CrossRefGoogle Scholar
  31. 31.
    A. Masalov, O. Viagin, P. Maksimchuk, V. Seminko, I. Bespalova, A. Aslanov, Y. Malyukin and Y. Zorenko: J. Lumin., 2014, vol. 145, pp. 61–64.CrossRefGoogle Scholar
  32. 32.
    M. Gaft, R. Reisfeld and G. Panczer: Luminescence Spectroscopy of Minerals and Materials. Springer, New York, 2005, pp. 139–42.Google Scholar
  33. 33.
    A.S. Marfunin: Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer-Verlag, Berlin, 1979, pp. 207.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations