Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition
- 56 Downloads
Abstract
Effects of slag composition and alloy content as well as temperature on the deoxidation and desulfurization of Inconel 718 superalloy by CaF2-CaO-Al2O3-MgO-TiO2 ESR-type slag without the addition of a deoxidizer were systematically investigated by laboratory-scale experiments and the developed mass transfer model. The model predictions were verified through comparison with experimental results in a double-layer crucible. The results showed that the oxygen content decreased with an increase of CaO, MgO and CaF2 content in the slag at 1773 K, and CaO has a great influence on the deoxidation of Inconel 718 alloy compared with MgO and CaF2 in slag, which was responsible for the decrease in equilibrium content of sulfur in the Inconel 718 alloy. The total oxygen and sulfur content decreased from 33.2 and 20 ppm in master alloys to about 10 and 6 ppm in alloy ingots at 1773 K, respectively. Properly increasing the Al and Ti content only lowered the oxygen and sulfur content in the nickel-based alloy to a limited extent when satisfying the mechanical properties of the Inconel 718 alloy. The interfacial oxygen content increased with increasing temperature, giving rise to a decrease in the desulfurization ratio \( \left( {{{[{\text{pct S}}]_{t = t} } \mathord{\left/ {\vphantom {{[{\text{pct S}}]_{t = t} } {[{\text{pct S}}]_{t = 0} }}} \right. \kern-0pt} {[{\text{pct S}}]_{t = 0} }}} \right) \). These results show that the lower temperature favored desulfurization of the nickel-based alloy.
Notes
Acknowledgments
The authors are thankful for the support from the National Natural Science Foundation of China (nos. U1560203, 51704021 and 51274031), Fundamental Research Funds for the Central Universities (FRF-TP-16-079A1) and Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials at the School of Metallurgical and Ecological Engineering at the University of Science and Technology Beijing (USTB), China.
References
- 1.A. Kracke and A. Allvac. Superalloys, the most successful alloy system of modern times-past, present and future. In 7th international symposium on superalloy 718 and derivatives. The Minerals, Metals and Materials Society, 2010, pp. 13–50.Google Scholar
- 2.2. E.A. Loria: JOM, 1992, vol. 44, pp. 33-36.CrossRefGoogle Scholar
- 3.3. M. Rahman, W.K.H. Seah and T.T. Teo: J. Mater. Process. Tech., 1997, vol. 63, pp. 199-204.CrossRefGoogle Scholar
- 4.4. G.W. Meetham: J. Mater. Sci., 1991, vol. 26, pp. 853-60.CrossRefGoogle Scholar
- 5.5. A. Thomas, M. El-Wahabi, J.M. Cabrera and J.M. Prado: J. Mater. Process. Tech., 2006, vol. 177, pp. 469-72.CrossRefGoogle Scholar
- 6.C. Briant: Impurities in Engineering Materials: Impact, Reliability, and Control. Marcel Dekker, Inc., New York (2017).CrossRefGoogle Scholar
- 7.7. W. Wallace, R.T. Holt and T. Terada: Metallography, 1973, vol. 6, pp. 511-26.CrossRefGoogle Scholar
- 8.8. E.P. Whelan and M.S. Grzedzielski: Met. Technol., 1974, vol. 1, pp. 186-90.CrossRefGoogle Scholar
- 9.9. W.R. Sun, S.R. Guo, D.Z. Lu and Z.O. Hu: Mater. Lett., 1997, vol. 31, pp. 195-200.CrossRefGoogle Scholar
- 10.10. C.L. White, J.H. Schneibel and R.A. Padgett: Metall. Trans. A, 1983, vol. 14, pp. 595-610.CrossRefGoogle Scholar
- 11.11. H.W. Song, S.R. Guo and Z.Q. Hu: Acta Metall. Sin., 1999, vol. 35, pp. 573-76.Google Scholar
- 12.12. R.T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1-24.CrossRefGoogle Scholar
- 13.13. J. Alexander: Mater. Sci. Tech., 1985, vol. 1, pp. 167-70.CrossRefGoogle Scholar
- 14.14. J.P. Niu, X.F. Sun, T. Jin, K.N. Yang, H.R. Guan and Z.Q. Hu: Mater. Sci. Tech., 2003, vol. 19, pp. 435-39.CrossRefGoogle Scholar
- 15.15. W. Bian, H. Zhang, M. Gao, Q. Li, J. Li, T. Tao and H. Zhang: Vacuum, 2018, vol. 152, pp. 57-64.CrossRefGoogle Scholar
- 16.Q. Li, H. Zhang, M. Gao, J. Li, T. Tao and H. Zhang: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 696-703.CrossRefGoogle Scholar
- 17.17. H.B. Bai, H.R. Zhang, J.F. Weng, B. Kong and H. Zhang: Mater. Res. Innovations, 2014, vol. 18, pp. 357-62.CrossRefGoogle Scholar
- 18.18. J.P. Niu, K.N. Yang, X.F. Sun, T. Jin, H.R. Guan and Z.Q. Hu: Rare Metal Mat. Eng., 2003, vol. 32, pp. 63-66.Google Scholar
- 19.20. J. Li, H. Zhang, M. Gao, Q. Li, J. Zhang, B. Yang and H. Zhang: Rare Metals, 2018, https://doi.org/10.1007/s12598-018-1103-1.CrossRefGoogle Scholar
- 20.21. A. Choudhury: ISIJ Int., 1992, vol. 32, pp. 563-74.CrossRefGoogle Scholar
- 21.22. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig and J. Bohacek: Steel Res. Int., 2018, vol. 89, pp. 1700100.CrossRefGoogle Scholar
- 22.23. A.K. Vaish, G.V.R. Iyer, P.K. De, B.A. Lakra, A.K. Chakrabarti and P. Ramachandrarao: J. Metall. Mater. Sci., 2000, vol. 42, pp. 11-29.Google Scholar
- 23.Z.H. Jiang, Y.W. Dong, X. Geng and F.B. Liu: Electroslag Metallurgy. Science Press, Beijing, 2015.Google Scholar
- 24.A. Mitchell: J. Vac. Sci. Technol., 1970, vol. 6, pp. S63-73.CrossRefGoogle Scholar
- 25.S. Duan, X. Shi, F. Wang, M. Zhang, Y. Sun, H. Guo and J. Guo: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 3055-71.CrossRefGoogle Scholar
- 26.27. W.E. Anable, R.H. Nafziger and D.C. Robinson: JOM-US, 1973, vol. 25, pp. 55-61.CrossRefGoogle Scholar
- 27.28. H. Miska and M. Wahlster: Arch. Eisenhuttenwes., 1973, vol. 44, pp. 81-85.Google Scholar
- 28.29. N.Q. Minh and T.B. King: Metall. Trans. B, 1979, vol. 10, pp. 623-29.CrossRefGoogle Scholar
- 29.30. M. Kato, K. Hasegawa, S. Nomura and M. Inouye: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 618-27.CrossRefGoogle Scholar
- 30.31. M. Eissa and A. EI Mohammadi: Steel Res. Int., 1998, vol. 69, pp. 413-17.CrossRefGoogle Scholar
- 31.32. T. Mattar, K. El-Fawakhry, H. Halfa and M. Eissa: Steel Res. Int., 2008, vol. 79, pp. 691-97.CrossRefGoogle Scholar
- 32.33. D. Hou, Z. Jiang, Y. Dong, Y. Li, W. Gong and F. Liu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1885-97.CrossRefGoogle Scholar
- 33.34. Y. Liu, Z. Zhang, G. Li, Q. Wang, L. Wang and B. Li: Steel Res. Int., 2017, vol. 88, pp. 1700058.CrossRefGoogle Scholar
- 34.35. Y. Liu, X. Wang, G. Li, Q. Wang, Z. Zhang and B. Li: Vacuum, 2018, vol. 154, pp. 351-58.CrossRefGoogle Scholar
- 35.36. R.S.E. Schneider, M. Molnar, S. Gelder, G. Reiter and C. Martinez: Steel Res. Int., 2018, vol. 89, pp. 1800161.CrossRefGoogle Scholar
- 36.37. Q. Wang, Z. He, G. Li, B. Li, C. Zhu and P. Chen: Int. J. Heat Mass Tran., 2017, vol. 104, pp. 943-51.CrossRefGoogle Scholar
- 37.38. Q. Wang, G. Li, Z. He and B. Li: Appl. Therm. Eng., 2017, vol. 114, pp. 874-86.CrossRefGoogle Scholar
- 38.39. Q. Wang, Y. Liu, Z. He, G. Li and B. Li: ISIJ Int., 2017, vol. 57, pp. 329-36.CrossRefGoogle Scholar
- 39.40. Q. Wang, Y. Liu, F. Wang, G. Li, B. Li and W. Qiao: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2649-63.CrossRefGoogle Scholar
- 40.41. X.C. Chen, F. Wang, C.B. Shi, H. Ren and H.J. Guo: J. Mater. Metall., 2012, vol. 11, pp. 252-57.Google Scholar
- 41.42. X. Chen, C. Shi, H. Guo, F. Wang, H. Ren and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1596-1607.CrossRefGoogle Scholar
- 42.J. Morscheiser, L. Thönnessen, B. Friedrich and M. Recycling. Sulphur Control in Nickel-Based Superalloy Production. The 6th European metallurgical conference EMC 2011. Duesseldorf, 2011.Google Scholar
- 43.44. S. Duan, X. Shi, F. Wang, M. Zhang, B. Li, W. Yang, H. Guo and J. Guo: J. Mater. Res. Technol., 2019, vol. 8, pp. 2508-16.CrossRefGoogle Scholar
- 44.45. J.X. Dong, X.S. Xie and R.G. Thompson: Metall. Mater. Trans. A., 2000, vol. 31, pp. 2135-44.CrossRefGoogle Scholar
- 45.C. Wagner and J.F. Elliott: The physical chemistry of steelmaking. Wiley, New York, 1958.Google Scholar
- 46.H.J. Guo: Metallurgical Physical Chemistry. Metallurgical Industry Press, Beijing, 2013.Google Scholar
- 47.48. W. Lou and M. Zhu: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1706-22.CrossRefGoogle Scholar
- 48.49. S.J. Li, G.G. Cheng, L. Yang, L. Chen, Q.Z. Yan and C.W. Li: ISIJ Int., 2017, vol. 57, pp. 713-22.CrossRefGoogle Scholar
- 49.50. D. Hou, Z. Jiang, Y. Dong, W. Gong, Y. Cao and H. Cao: ISIJ Int., 2017, vol. 57, pp. 1400-09.CrossRefGoogle Scholar
- 50.C. Wagner: Thermodynamics of Alloys. Addison-Wesley Press, Reading, 1952Google Scholar
- 51.52. Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1465-74.CrossRefGoogle Scholar
- 52.53. Y. Kang, M. Kim, S. Lee, J. Cho, M. Park and H. Lee: Metall. Mater. Trans. B, 2013, vol. 44, pp. 309-16.CrossRefGoogle Scholar
- 53.Z.B. Li: Electroslag Metallurgy Theory and Practice. Metallurgical Industry Press, Beijing, 2010.Google Scholar
- 54.55. K. Mukai, Z. Li and K.C. Mills: Metall. Mater. Trans. B, 2005, vol. 36, pp. 255-62.CrossRefGoogle Scholar
- 55.56. J.G. Kang, J.H. Shin, Y. Chung and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2123-35.CrossRefGoogle Scholar
- 56.57. D. Hou, Z. Jiang, T. Qu, D. Wang, F. Liu and H. Li: J. Iron Steel Res. Int., 2019, vol. 26, pp. 20-31.CrossRefGoogle Scholar
- 57.58. D. Park, I. Jung, P.C.H. Rhee and H. Lee: ISIJ Int., 2004, vol. 44, pp. 1669-78.CrossRefGoogle Scholar
- 58.59. M. Valdez, G.S. Shannon and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450-57.CrossRefGoogle Scholar
- 59.60. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.CrossRefGoogle Scholar
- 60.61. Y. Zhang, W. Chen, Y. Yang and A. Mclean: ISIJ Int., 2017, vol. 57, pp. 322-28.CrossRefGoogle Scholar
- 61.62. J.S. Park and J.H. Park: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3225-30.CrossRefGoogle Scholar
- 62.63. E. Andersson and D. Sichen: Steel Res. Int., 2010, vol. 80, pp. 544-51.Google Scholar
- 63.C. Shi, J. Cho, D. Zheng and J. Li: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 627-36.CrossRefGoogle Scholar
- 64.65. J.H. Park and D.J. Min: Steel Res. Int., 2004, vol. 75, pp. 807-11.CrossRefGoogle Scholar
- 65.66. D. Roy, P.C. Pistorius and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1086-94.CrossRefGoogle Scholar
- 66.67. F. Patsiogiannis, U.B. Pal and R.S. Bogan: Can. Metall. Quart., 1994, vol. 33, pp. 305-12.CrossRefGoogle Scholar
- 67.68. M. Ohta, T. Kubo and K. Morita: Tetsu-to-Hagane, 2003, vol. 89, pp. 742-49.CrossRefGoogle Scholar
- 68.69. S. Ban-Ya, M. Hobo, T. Kaji, T. Itoh and M. Hino: ISIJ Int., 2004, vol. 44, pp. 1810-16.CrossRefGoogle Scholar
- 69.70. Y. Kawai, R. Nakao and K. Mori: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 509-14.CrossRefGoogle Scholar
- 70.71. S. Li, G. Cheng, Z. Miao, L. Chen, C. Li and X. Jiang: ISIJ Int., 2017, vol. 57, pp. 2148-56.CrossRefGoogle Scholar
- 71.72. R.J. Pomfret and P. Grieveson: Can. Metall. Quart., 1983, vol. 22, pp. 287-99.CrossRefGoogle Scholar
- 72.C.Z. Wang: Research Methods in Metallurgical Physical Chemistry. Metallurgical Industry Press, Beijing, 2013.Google Scholar
- 73.74. S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo and J. Guo: Sci. Rep., 2018, vol. 8, pp. 5232.CrossRefGoogle Scholar