Advertisement

Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition

  • Sheng-Chao Duan
  • Xiao Shi
  • Man-Cang Zhang
  • Bin Li
  • Wen-Sheng Yang
  • Fei Wang
  • Han-Jie GuoEmail author
  • Jing Guo
Article
  • 56 Downloads

Abstract

Effects of slag composition and alloy content as well as temperature on the deoxidation and desulfurization of Inconel 718 superalloy by CaF2-CaO-Al2O3-MgO-TiO2 ESR-type slag without the addition of a deoxidizer were systematically investigated by laboratory-scale experiments and the developed mass transfer model. The model predictions were verified through comparison with experimental results in a double-layer crucible. The results showed that the oxygen content decreased with an increase of CaO, MgO and CaF2 content in the slag at 1773 K, and CaO has a great influence on the deoxidation of Inconel 718 alloy compared with MgO and CaF2 in slag, which was responsible for the decrease in equilibrium content of sulfur in the Inconel 718 alloy. The total oxygen and sulfur content decreased from 33.2 and 20 ppm in master alloys to about 10 and 6 ppm in alloy ingots at 1773 K, respectively. Properly increasing the Al and Ti content only lowered the oxygen and sulfur content in the nickel-based alloy to a limited extent when satisfying the mechanical properties of the Inconel 718 alloy. The interfacial oxygen content increased with increasing temperature, giving rise to a decrease in the desulfurization ratio \( \left( {{{[{\text{pct S}}]_{t = t} } \mathord{\left/ {\vphantom {{[{\text{pct S}}]_{t = t} } {[{\text{pct S}}]_{t = 0} }}} \right. \kern-0pt} {[{\text{pct S}}]_{t = 0} }}} \right) \). These results show that the lower temperature favored desulfurization of the nickel-based alloy.

Notes

Acknowledgments

The authors are thankful for the support from the National Natural Science Foundation of China (nos. U1560203, 51704021 and 51274031), Fundamental Research Funds for the Central Universities (FRF-TP-16-079A1) and Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials at the School of Metallurgical and Ecological Engineering at the University of Science and Technology Beijing (USTB), China.

References

  1. 1.
    A. Kracke and A. Allvac. Superalloys, the most successful alloy system of modern times-past, present and future. In 7th international symposium on superalloy 718 and derivatives. The Minerals, Metals and Materials Society, 2010, pp. 13–50.Google Scholar
  2. 2.
    2. E.A. Loria: JOM, 1992, vol. 44, pp. 33-36.CrossRefGoogle Scholar
  3. 3.
    3. M. Rahman, W.K.H. Seah and T.T. Teo: J. Mater. Process. Tech., 1997, vol. 63, pp. 199-204.CrossRefGoogle Scholar
  4. 4.
    4. G.W. Meetham: J. Mater. Sci., 1991, vol. 26, pp. 853-60.CrossRefGoogle Scholar
  5. 5.
    5. A. Thomas, M. El-Wahabi, J.M. Cabrera and J.M. Prado: J. Mater. Process. Tech., 2006, vol. 177, pp. 469-72.CrossRefGoogle Scholar
  6. 6.
    C. Briant: Impurities in Engineering Materials: Impact, Reliability, and Control. Marcel Dekker, Inc., New York (2017).CrossRefGoogle Scholar
  7. 7.
    7. W. Wallace, R.T. Holt and T. Terada: Metallography, 1973, vol. 6, pp. 511-26.CrossRefGoogle Scholar
  8. 8.
    8. E.P. Whelan and M.S. Grzedzielski: Met. Technol., 1974, vol. 1, pp. 186-90.CrossRefGoogle Scholar
  9. 9.
    9. W.R. Sun, S.R. Guo, D.Z. Lu and Z.O. Hu: Mater. Lett., 1997, vol. 31, pp. 195-200.CrossRefGoogle Scholar
  10. 10.
    10. C.L. White, J.H. Schneibel and R.A. Padgett: Metall. Trans. A, 1983, vol. 14, pp. 595-610.CrossRefGoogle Scholar
  11. 11.
    11. H.W. Song, S.R. Guo and Z.Q. Hu: Acta Metall. Sin., 1999, vol. 35, pp. 573-76.Google Scholar
  12. 12.
    12. R.T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1-24.CrossRefGoogle Scholar
  13. 13.
    13. J. Alexander: Mater. Sci. Tech., 1985, vol. 1, pp. 167-70.CrossRefGoogle Scholar
  14. 14.
    14. J.P. Niu, X.F. Sun, T. Jin, K.N. Yang, H.R. Guan and Z.Q. Hu: Mater. Sci. Tech., 2003, vol. 19, pp. 435-39.CrossRefGoogle Scholar
  15. 15.
    15. W. Bian, H. Zhang, M. Gao, Q. Li, J. Li, T. Tao and H. Zhang: Vacuum, 2018, vol. 152, pp. 57-64.CrossRefGoogle Scholar
  16. 16.
    Q. Li, H. Zhang, M. Gao, J. Li, T. Tao and H. Zhang: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 696-703.CrossRefGoogle Scholar
  17. 17.
    17. H.B. Bai, H.R. Zhang, J.F. Weng, B. Kong and H. Zhang: Mater. Res. Innovations, 2014, vol. 18, pp. 357-62.CrossRefGoogle Scholar
  18. 18.
    18. J.P. Niu, K.N. Yang, X.F. Sun, T. Jin, H.R. Guan and Z.Q. Hu: Rare Metal Mat. Eng., 2003, vol. 32, pp. 63-66.Google Scholar
  19. 19.
    20. J. Li, H. Zhang, M. Gao, Q. Li, J. Zhang, B. Yang and H. Zhang: Rare Metals, 2018,  https://doi.org/10.1007/s12598-018-1103-1.CrossRefGoogle Scholar
  20. 20.
    21. A. Choudhury: ISIJ Int., 1992, vol. 32, pp. 563-74.CrossRefGoogle Scholar
  21. 21.
    22. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig and J. Bohacek: Steel Res. Int., 2018, vol. 89, pp. 1700100.CrossRefGoogle Scholar
  22. 22.
    23. A.K. Vaish, G.V.R. Iyer, P.K. De, B.A. Lakra, A.K. Chakrabarti and P. Ramachandrarao: J. Metall. Mater. Sci., 2000, vol. 42, pp. 11-29.Google Scholar
  23. 23.
    Z.H. Jiang, Y.W. Dong, X. Geng and F.B. Liu: Electroslag Metallurgy. Science Press, Beijing, 2015.Google Scholar
  24. 24.
    A. Mitchell: J. Vac. Sci. Technol., 1970, vol. 6, pp. S63-73.CrossRefGoogle Scholar
  25. 25.
    S. Duan, X. Shi, F. Wang, M. Zhang, Y. Sun, H. Guo and J. Guo: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 3055-71.CrossRefGoogle Scholar
  26. 26.
    27. W.E. Anable, R.H. Nafziger and D.C. Robinson: JOM-US, 1973, vol. 25, pp. 55-61.CrossRefGoogle Scholar
  27. 27.
    28. H. Miska and M. Wahlster: Arch. Eisenhuttenwes., 1973, vol. 44, pp. 81-85.Google Scholar
  28. 28.
    29. N.Q. Minh and T.B. King: Metall. Trans. B, 1979, vol. 10, pp. 623-29.CrossRefGoogle Scholar
  29. 29.
    30. M. Kato, K. Hasegawa, S. Nomura and M. Inouye: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 618-27.CrossRefGoogle Scholar
  30. 30.
    31. M. Eissa and A. EI Mohammadi: Steel Res. Int., 1998, vol. 69, pp. 413-17.CrossRefGoogle Scholar
  31. 31.
    32. T. Mattar, K. El-Fawakhry, H. Halfa and M. Eissa: Steel Res. Int., 2008, vol. 79, pp. 691-97.CrossRefGoogle Scholar
  32. 32.
    33. D. Hou, Z. Jiang, Y. Dong, Y. Li, W. Gong and F. Liu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1885-97.CrossRefGoogle Scholar
  33. 33.
    34. Y. Liu, Z. Zhang, G. Li, Q. Wang, L. Wang and B. Li: Steel Res. Int., 2017, vol. 88, pp. 1700058.CrossRefGoogle Scholar
  34. 34.
    35. Y. Liu, X. Wang, G. Li, Q. Wang, Z. Zhang and B. Li: Vacuum, 2018, vol. 154, pp. 351-58.CrossRefGoogle Scholar
  35. 35.
    36. R.S.E. Schneider, M. Molnar, S. Gelder, G. Reiter and C. Martinez: Steel Res. Int., 2018, vol. 89, pp. 1800161.CrossRefGoogle Scholar
  36. 36.
    37. Q. Wang, Z. He, G. Li, B. Li, C. Zhu and P. Chen: Int. J. Heat Mass Tran., 2017, vol. 104, pp. 943-51.CrossRefGoogle Scholar
  37. 37.
    38. Q. Wang, G. Li, Z. He and B. Li: Appl. Therm. Eng., 2017, vol. 114, pp. 874-86.CrossRefGoogle Scholar
  38. 38.
    39. Q. Wang, Y. Liu, Z. He, G. Li and B. Li: ISIJ Int., 2017, vol. 57, pp. 329-36.CrossRefGoogle Scholar
  39. 39.
    40. Q. Wang, Y. Liu, F. Wang, G. Li, B. Li and W. Qiao: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2649-63.CrossRefGoogle Scholar
  40. 40.
    41. X.C. Chen, F. Wang, C.B. Shi, H. Ren and H.J. Guo: J. Mater. Metall., 2012, vol. 11, pp. 252-57.Google Scholar
  41. 41.
    42. X. Chen, C. Shi, H. Guo, F. Wang, H. Ren and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1596-1607.CrossRefGoogle Scholar
  42. 42.
    J. Morscheiser, L. Thönnessen, B. Friedrich and M. Recycling. Sulphur Control in Nickel-Based Superalloy Production. The 6th European metallurgical conference EMC 2011. Duesseldorf, 2011.Google Scholar
  43. 43.
    44. S. Duan, X. Shi, F. Wang, M. Zhang, B. Li, W. Yang, H. Guo and J. Guo: J. Mater. Res. Technol., 2019, vol. 8, pp. 2508-16.CrossRefGoogle Scholar
  44. 44.
    45. J.X. Dong, X.S. Xie and R.G. Thompson: Metall. Mater. Trans. A., 2000, vol. 31, pp. 2135-44.CrossRefGoogle Scholar
  45. 45.
    C. Wagner and J.F. Elliott: The physical chemistry of steelmaking. Wiley, New York, 1958.Google Scholar
  46. 46.
    H.J. Guo: Metallurgical Physical Chemistry. Metallurgical Industry Press, Beijing, 2013.Google Scholar
  47. 47.
    48. W. Lou and M. Zhu: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1706-22.CrossRefGoogle Scholar
  48. 48.
    49. S.J. Li, G.G. Cheng, L. Yang, L. Chen, Q.Z. Yan and C.W. Li: ISIJ Int., 2017, vol. 57, pp. 713-22.CrossRefGoogle Scholar
  49. 49.
    50. D. Hou, Z. Jiang, Y. Dong, W. Gong, Y. Cao and H. Cao: ISIJ Int., 2017, vol. 57, pp. 1400-09.CrossRefGoogle Scholar
  50. 50.
    C. Wagner: Thermodynamics of Alloys. Addison-Wesley Press, Reading, 1952Google Scholar
  51. 51.
    52. Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1465-74.CrossRefGoogle Scholar
  52. 52.
    53. Y. Kang, M. Kim, S. Lee, J. Cho, M. Park and H. Lee: Metall. Mater. Trans. B, 2013, vol. 44, pp. 309-16.CrossRefGoogle Scholar
  53. 53.
    Z.B. Li: Electroslag Metallurgy Theory and Practice. Metallurgical Industry Press, Beijing, 2010.Google Scholar
  54. 54.
    55. K. Mukai, Z. Li and K.C. Mills: Metall. Mater. Trans. B, 2005, vol. 36, pp. 255-62.CrossRefGoogle Scholar
  55. 55.
    56. J.G. Kang, J.H. Shin, Y. Chung and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2123-35.CrossRefGoogle Scholar
  56. 56.
    57. D. Hou, Z. Jiang, T. Qu, D. Wang, F. Liu and H. Li: J. Iron Steel Res. Int., 2019, vol. 26, pp. 20-31.CrossRefGoogle Scholar
  57. 57.
    58. D. Park, I. Jung, P.C.H. Rhee and H. Lee: ISIJ Int., 2004, vol. 44, pp. 1669-78.CrossRefGoogle Scholar
  58. 58.
    59. M. Valdez, G.S. Shannon and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450-57.CrossRefGoogle Scholar
  59. 59.
    60. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.CrossRefGoogle Scholar
  60. 60.
    61. Y. Zhang, W. Chen, Y. Yang and A. Mclean: ISIJ Int., 2017, vol. 57, pp. 322-28.CrossRefGoogle Scholar
  61. 61.
    62. J.S. Park and J.H. Park: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3225-30.CrossRefGoogle Scholar
  62. 62.
    63. E. Andersson and D. Sichen: Steel Res. Int., 2010, vol. 80, pp. 544-51.Google Scholar
  63. 63.
    C. Shi, J. Cho, D. Zheng and J. Li: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 627-36.CrossRefGoogle Scholar
  64. 64.
    65. J.H. Park and D.J. Min: Steel Res. Int., 2004, vol. 75, pp. 807-11.CrossRefGoogle Scholar
  65. 65.
    66. D. Roy, P.C. Pistorius and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1086-94.CrossRefGoogle Scholar
  66. 66.
    67. F. Patsiogiannis, U.B. Pal and R.S. Bogan: Can. Metall. Quart., 1994, vol. 33, pp. 305-12.CrossRefGoogle Scholar
  67. 67.
    68. M. Ohta, T. Kubo and K. Morita: Tetsu-to-Hagane, 2003, vol. 89, pp. 742-49.CrossRefGoogle Scholar
  68. 68.
    69. S. Ban-Ya, M. Hobo, T. Kaji, T. Itoh and M. Hino: ISIJ Int., 2004, vol. 44, pp. 1810-16.CrossRefGoogle Scholar
  69. 69.
    70. Y. Kawai, R. Nakao and K. Mori: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 509-14.CrossRefGoogle Scholar
  70. 70.
    71. S. Li, G. Cheng, Z. Miao, L. Chen, C. Li and X. Jiang: ISIJ Int., 2017, vol. 57, pp. 2148-56.CrossRefGoogle Scholar
  71. 71.
    72. R.J. Pomfret and P. Grieveson: Can. Metall. Quart., 1983, vol. 22, pp. 287-99.CrossRefGoogle Scholar
  72. 72.
    C.Z. Wang: Research Methods in Metallurgical Physical Chemistry. Metallurgical Industry Press, Beijing, 2013.Google Scholar
  73. 73.
    74. S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo and J. Guo: Sci. Rep., 2018, vol. 8, pp. 5232.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology Beijing (USTB)BeijingP.R. China
  2. 2.Beijing Key Laboratory of Special Melting and Preparation of High-End Metal MaterialsUniversity of Science and Technology Beijing (USTB)BeijingP.R. China
  3. 3.Tianjin Cisri-Harder Materials & Technology Co. Ltd.Central Iron and Steel Research Institute (CISRI)TianjinP.R. China

Personalised recommendations