Formation and Evolution of Non-metallic Inclusions in Ti-Bearing Al-Killed Steel During Secondary Refining Process

  • Zhiyin DengEmail author
  • Lei Chen
  • Guodong Song
  • Miaoyong Zhu


Industrial and laboratory experiments were carried out to investigate the formation and evolution of the inclusions in Ti-bearing Al-killed steel, and thermodynamic calculations were also conducted to check the stability of inclusions in steel. It is found that the addition of Ti influences the inclusions evidently. Before Ti addition, the inclusions transform along the route of “Al2O3 → MgO·Al2O3 spinel → CaO-Al2O3(-MgO) system” with the generation of dissolved Mg and Ca in liquid steel. When there is no sufficient Ca in liquid steel, the addition of Ti during refining process would lead to the transformation of MgO·Al2O3 spinel inclusions into MgO-Al2O3-TiOx inclusions. When a trace of dissolved Ca is formed, CaO-Al2O3-TiOx system inclusions can be generated from MgO-Al2O3-TiOx inclusions or CaO-Al2O3 inclusions. Higher calcium content originated from calcium treatment would result in the formation of CaO·TiO2 inclusions, and then weaken the castability of Ti-bearing Al-killed steel grades. Calcium treatment could also increase the frequency of macro-inclusions in steel, and evidently decline the quality of the steel. Cancellation of calcium treatment is suggested to improve the cleanliness of Ti-bearing Al-killed steel grades.



The authors are grateful to The National Key R&D Program of China (Grant No. 2017YFB0304100) and the Fundamental Research Funds for the Central Universities (Grant No. N182504016) as well as China Postdoctoral Science Foundation (Grant No. 2019M651131) for the financial support of the present study.


  1. 1.
    W. Saikaly, L. Charrin, A. Charaï, X. Bano, and C. Issartel: Metall. Mater. Trans. A, 2000, vol. 32, pp.1939-47.Google Scholar
  2. 2.
    L. M. Peng and Z. H. Li: J. Mater. Sci., 2006, vol. 41, pp. 7524-29.CrossRefGoogle Scholar
  3. 3.
    J. J. Pak, J. O. Jo, S. I. Kim, T. I. Chung, S. M. Seo, J. H. Park, and D. S. Kim: ISIJ Int., 2007, vol. 1, pp. 16-24.CrossRefGoogle Scholar
  4. 4.
    S. Basu, S. K. Choudhary, and N. U. Girase: ISIJ Int., 2004, vol. 10, pp.1653-60.CrossRefGoogle Scholar
  5. 5.
    L. M. Akselrod, V. M. Parshin, and E. F. Mazurov: Steel in Translation, 2007, vol. 4, pp. 370-74.CrossRefGoogle Scholar
  6. 6.
    G. Qian and G. Cheng: in AISTech 2014, Association for Iron & Steel Technology, Indianapolis, USA, 2014; vol. 2, pp. 1823–29.Google Scholar
  7. 7.
    H. Zheng, W. Chen, and Y Hu: in AISTech 2004, Association for Iron & Steel Technology, Nashville, USA, 2004, vol. 1, pp. 937–45.Google Scholar
  8. 8.
    Z. Y. Deng, M. Y. Zhu, Y. L. Zhou and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2015–25.CrossRefGoogle Scholar
  9. 9.
    K. Wasai, K. Mukal, and A. Miyanaga: ISIJ Int., 2002, vol. 42, pp. 459-66.CrossRefGoogle Scholar
  10. 10.
    M. K. Sun, I. H. Jung, and H. G. Lee: Metals Mater. Int., 2008, vol. 14, pp. 791-98.CrossRefGoogle Scholar
  11. 11.
    W. C. Doo, D. Y. Kim, S. C. Kang, and K. W. Yi: Metals Mater. Int., 2007, vol. 13, pp. 249-55.CrossRefGoogle Scholar
  12. 12.
    I. H. Jung, S. A. Decterov, and A. D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35, pp. 493-507.CrossRefGoogle Scholar
  13. 13.
    C. Wang, N. T. Nuhfer, and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40, pp. 1022-34.CrossRefGoogle Scholar
  14. 14.
    M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2010, vol. 50, pp. 95-104.CrossRefGoogle Scholar
  15. 15.
    Y. Ehara, S. Yokoyama, M. Kawakami: Tetsu-to-Hagané, 2007, vol. 93, pp. 208-14.CrossRefGoogle Scholar
  16. 16.
    J. H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.CrossRefGoogle Scholar
  17. 17.
    K. Beskow, J. Jia, C. H. P. Lupis, et al: Ironmak. Steelmak., 2002, vol. 29, pp. 427-35.CrossRefGoogle Scholar
  18. 18.
    Z. Y. Deng and M. Y. Zhu: ISIJ Int., 2013, vol. 53, pp. 450-58.CrossRefGoogle Scholar
  19. 19.
    Z. Y. Deng, M. Y. Zhu, and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3158-67.CrossRefGoogle Scholar
  20. 20.
    Y. G. Chi, Z. Y. Deng, and M. Y. Zhu: Steel Res. Int., 2017, vol. 88, pp.1600470.CrossRefGoogle Scholar
  21. 21.
    L. Z. Kong, Z. Y. Deng, and M. Y. Zhu: ISIJ Int., 2017, vol. 57, pp. 1537-45.CrossRefGoogle Scholar
  22. 22.
    H. Zheng and W. Chen: J. Univ. Sci. Tech. Beijing, 2006, vol.13, pp. 16-20.CrossRefGoogle Scholar
  23. 23.
    J. H. Park, S. B. Lee, and H. R. Gaye: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 853–61.CrossRefGoogle Scholar
  24. 24.
    S. Li, Z. Huang, Z. Jiang, Y. Li, H. Chi, and Z. Chen: Adv. Mater. Res., 2010, vol. 146-147, pp. 1440-45.Google Scholar
  25. 25.
    J. Li, G. Cheng, Q. Ruan, J. Li, J. Pan, and X. Chen: ISIJ Int., 2018, vol. 58, pp. 1042–51.CrossRefGoogle Scholar
  26. 26.
    J. Li, G. Cheng, Q. Ruan, J. Pan, and X. Chen: ISIJ Int., 2018, vol. 58, pp. 2280–87.CrossRefGoogle Scholar
  27. 27.
    J. Li, G. Cheng, Q. Ruan, J. Pan, and X. Chen (2019) Ironmak. Steelmak., DOI: 10.1080/03019233.2019.1568367.CrossRefGoogle Scholar
  28. 28.
    Y. Ren, L. Zhang, W. Yang, and H. Duan: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2057–71.CrossRefGoogle Scholar
  29. 29.
    T. Zhang, C. Liu, and M. Jiang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2253–62.CrossRefGoogle Scholar
  30. 30.
    X. Zou, D. Zhao, J. Sun, W. Cong, and H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 481–89.CrossRefGoogle Scholar
  31. 31.
    T. Zhang, C. Liu, H. Wu, Y. Li and M. Jiang: Ironmak. Steelmak., 2018, vol. 45, pp. 187-93.CrossRefGoogle Scholar
  32. 32.
    Y. Li, T. Zhang, and H. Duan: Metals, 2019, vol. 9, pp. 104.CrossRefGoogle Scholar
  33. 33.
    W.Y. Cha, T. Nagasaka, T. Miki, Y. Sasaki, and M. Hino: ISIJ Int., 2006, vol. 46, pp. 996–1005.CrossRefGoogle Scholar
  34. 34.
    S. H. Seok, T. Miki, and M. Hino: ISIJ Int., 2011, vol. 51, pp. 566-72.CrossRefGoogle Scholar
  35. 35.
    H. Itoh, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 773-78.CrossRefGoogle Scholar
  36. 36.
    H. Itoh, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 623-28.CrossRefGoogle Scholar
  37. 37.
    H. Itoh, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 695-700.CrossRefGoogle Scholar
  38. 38.
    T. Hong and T. Debroy: Scr. Mater., 2001, vol. 44, pp. 847–52.CrossRefGoogle Scholar
  39. 39.
    H. R. Rein and J. Chipman: Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 415.Google Scholar
  40. 40.
    K. Nagata, J. Tanabe and K. S. Goto: Tetsu-to-Hagané, 1989, vol.75, pp. 2023–30.CrossRefGoogle Scholar
  41. 41.
    E. T. Turkdogan: Physical Chemistry of High temperature Technology. Academic Press, New York, NY, 1980, pp. 8.Google Scholar
  42. 42.
    H. Matsuura, C. Wang, G. Wen, and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1265–74.CrossRefGoogle Scholar
  43. 43.
    H. Ono, K. Nakajima, R. Maruo, S. Agawa, and T. Usui: ISIJ Int., 2009, vol. 49, pp. 957-64.CrossRefGoogle Scholar
  44. 44.
    G.K. Sigworth, J.F. Elliott: Met. Sci., vol. 8, pp. 298-310 (1974)CrossRefGoogle Scholar
  45. 45.
    S. K. Jo, S. H. Kim, and B. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 703–09.CrossRefGoogle Scholar
  46. 46.
    X. Yin, Y. Sun, Y. Yang, X. Bai, M. Barati, and A. Mclean: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3274–84.CrossRefGoogle Scholar
  47. 47.
    W. Zheng, Z.Wu, G. Li, Z. Zhang, and C. Zhu: ISIJ Int., 2014, vol. 54, pp. 1755–64.CrossRefGoogle Scholar
  48. 48.
    C.-W. Seo, S.-H. Kim, S.-K. Jo, M.-O. Suk, and S.-M. Byun: Metall. Mater. Trans. B, 2010, vol. 41B, pp.790–97.CrossRefGoogle Scholar
  49. 49.
    Z.W. Hou, M. Jiang, E.J. Yang, and X. H. Wang: in 7th Int. Cong. Sci. Tech. Steelmak (ICS 2018), Associazione Italiana di Metallurgia, Venice, Italy, 2018, pp. ICS 063.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Zhiyin Deng
    • 1
    • 2
    • 3
    Email author
  • Lei Chen
    • 1
    • 2
  • Guodong Song
    • 1
    • 2
  • Miaoyong Zhu
    • 1
    • 2
  1. 1.Key Laboratory for Ecological Metallurgy of Multimetallic Minerals (Ministry of Education)Northeastern UniversityShenyangP.R. China
  2. 2.School of MetallurgyNortheastern UniversityShenyangP.R. China
  3. 3.Shandong Iron & Steel Cop. Ltd. Laiwu BranchJinanP.R. China

Personalised recommendations