Advertisement

Metallurgical and Materials Transactions B

, Volume 51, Issue 1, pp 61–78 | Cite as

Impact of the Electromagnetic Brake Position on the Flow Structure in a Slab Continuous Casting Mold: An Experimental Parameter Study

  • Dennis SchurmannEmail author
  • Ivan Glavinić
  • Bernd Willers
  • Klaus Timmel
  • Sven Eckert
Article
  • 232 Downloads

Abstract

Flow measurements are performed in a slab model for continuous casting of steel under the influence of a ruler type Electromagnetic Brake (EMBr). The Mini-LIMMCAST facility utilizes the low melting GaInSn alloy for flow modeling. Two-dimensional velocity distributions in the center plane of the rectangular mold with a cross section of \(300 \times 35\,\hbox {mm}^{2}\) are determined by means of the ultrasound Doppler velocimetry. This study especially focuses on the influence of the vertical position of the EMBr and its magnetic flux density as well as the effect of different immersion depths of the submerged entry nozzle. The horizontal flow velocity just below the free surface can effectively be reduced by choosing an optimal position of the EMBr, while an improper positioning even increases the near-surface velocity compared to the case without activated brake. A general braking effect of the EMBr on the submerged jet is not observed. The decisive mechanism for controlling the near-surface flow results from a modification of the jet geometry and a reorganization of the flow field. In terms of an effective flow control an appropriate positioning of the EMBr has at least the same significance as the regulation of the magnetic field strength.

Notes

References

  1. 1.
    L. C. Hibbeler and B. G. Thomas: Iron Steel Technol., 2013, vol. 10 , pp. 121–136.Google Scholar
  2. 2.
    B. G. Thomas (2018) Steel Res. Int., vol. 89:1700 312.CrossRefGoogle Scholar
  3. 3.
    S.-M. Cho and B. G. Thomas: Metals, 2019, vol. 9, p. 471.CrossRefGoogle Scholar
  4. 4.
    J. Kubota, N. Kubo, T. Ishii, M. Suzuki, N. Aramaki and R. Nishimachi: NKK Technical Review, 2001, vol. 85 p. 9.Google Scholar
  5. 5.
    C. Ji, J. Li, H. Tang and S. Yang: Steel Res. Int., 2013, vol. 84, pp. 259–268.CrossRefGoogle Scholar
  6. 6.
    S.-M. Cho, S.-H. Kim and B. G. Thomas: ISIJ Int., 2014, vol. 54, pp. 845–854.CrossRefGoogle Scholar
  7. 7.
    S.-W. Han, H.-J. Cho, S.-Y. Jin, M. Sedén, I.-B. Lee and I. Sohn: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2757–2769.CrossRefGoogle Scholar
  8. 8.
    T. Zhang, J. Yang and P. Jiang: Metals, 2019, vol. 9, p. 36.CrossRefGoogle Scholar
  9. 9.
    J. Szekely and R. T. Yadoya: Metall. Trans., 1972, vol. 3, pp. 2673–2680.CrossRefGoogle Scholar
  10. 10.
    H.-J. Odenthal, H. Pfeifer, I. Lemanowicz and R. Gorissen: Metall. Mater. Trans. B, 2002, vol. 33, pp. 163–172.CrossRefGoogle Scholar
  11. 11.
    Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol. 43, pp. 1548–1555.CrossRefGoogle Scholar
  12. 12.
    Y. J. Jeon, H. J. Sung and S. Lee: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 121–130.CrossRefGoogle Scholar
  13. 13.
    A. Idogawa, M. Sugizawa, S. Takeuchi, K. Sorimachi and T. Fujii: Materials Science and Engineering: A, 1993, vol. 173, pp. 293–297.CrossRefGoogle Scholar
  14. 14.
    K. Okazawa, I. Sawada, H. Harada, T. Toh and E. Takeuchi: Tetsu-to-Hagane, 1998, vol. 84, pp. 490–495.CrossRefGoogle Scholar
  15. 15.
    H. Harada, T. Toh, T. Ishii, K. Kaneko and E. Takeuchi: ISIJ Int., 2001, vol. 41, pp. 1236–1244.CrossRefGoogle Scholar
  16. 16.
    K. Timmel, S. Eckert and G. Gerbeth: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 68–80.CrossRefGoogle Scholar
  17. 17.
    Z.-Q. Zhang, J.-B. Yu, Z.-M. Ren and K. Deng: Adv. Manuf., 2015, vol. 3, pp. 212–220.CrossRefGoogle Scholar
  18. 18.
    Z. Yu, Z.-Q. Zhang and Z.-M. Ren: Adv. Manuf., 2017, vol. 5, pp. 271–278.CrossRefGoogle Scholar
  19. 19.
    K. H. Moon, H. K. Shin, B. J. Kim, J. Y. Chung, Y. S. Hwang and J. K. Yoon: ISIJ Int., 1996, vol. 36, pp. S201–S203.CrossRefGoogle Scholar
  20. 20.
    Y.-S. Hwang, P.-R. Cha, H.-S. Nam, K.-H. Moon and J.-K. Yoon: ISIJ Int., 1997, vol. 37, pp. 659–667.CrossRefGoogle Scholar
  21. 21.
    Y. Haiqi, W. Baofeng, L. Huiqin and L. Jianchao: Journal of Materials Processing Technology, 2008, vol. 202, pp. 179–187.CrossRefGoogle Scholar
  22. 22.
    S. Garcia-Hernandez, R. D. Morales and E. Torres-Alonso: Ironmaking Steelmaking, 2010, vol. 37, pp. 360–368.CrossRefGoogle Scholar
  23. 23.
    X. Miao, K. Timmel, D. Lucas, Z. Ren, S. Eckert and G. Gerbeth: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 954–972.CrossRefGoogle Scholar
  24. 24.
    R. Chaudhary, B. G. Thomas and S. P. Vanka: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 532–553.CrossRefGoogle Scholar
  25. 25.
    R. Singh, B. G. Thomas and S. P. Vanka: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1201–1221.CrossRefGoogle Scholar
  26. 26.
    B. G. Thomas, R. Singh, S. P. Vanka, K. Timmel, S. Eckert and G. Gerbeth: J. Manuf. Sci. Prod., 2015, vol. 15, pp. 93–104.Google Scholar
  27. 27.
    Z. Liu, A. Vakhrushev, M. Wu, E. Karimi-Sibaki, A. Kharicha, A. Ludwig and B. Li: Metals, 2018, vol. 8, p. 609.CrossRefGoogle Scholar
  28. 28.
    C.Y. Ho and T.K. Chu: Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels. Technical Report 45, Cindas, Purdue University, West Lafayette, 1977.Google Scholar
  29. 29.
    I. Jimbo and A. W. Cramb: Metall. Trans. B, 1993, vol. 24, pp. 5–10.CrossRefGoogle Scholar
  30. 30.
    M. Korolczuk-Hejnak, P. Migas and W. Ślęzak: J.Phys.: Conf. Ser., 2015, vol. 602, p. 012 037.CrossRefGoogle Scholar
  31. 31.
    Z. Li, K. Mukai, M. Zeze and K. C. Mills: J. Mater. Sci., 2005, vol. 40, pp. 2191–2195.CrossRefGoogle Scholar
  32. 32.
    Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth and R. Novakovic: J. Chem. Eng. Data, 2014, vol. 59, pp. 757–763.CrossRefGoogle Scholar
  33. 33.
    VDI, editor: VDI-Wärmeatlas, 11th edn., Springer, Berlin, 2013.Google Scholar
  34. 34.
    K. Timmel, S. Eckert, G. Gerbeth, F. Stefani and T. Wondrak: ISIJ Int., 2010, vol. 50, pp. 1134–1141.CrossRefGoogle Scholar
  35. 35.
    K. Timmel, C. Kratzsch, A. Asad, D. Schurmann, R. Schwarze and S. Eckert: IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 228 p. 012 019.CrossRefGoogle Scholar
  36. 36.
    Y. Takeda: Nuclear Engineering and Design, 1991, vol. 126, pp. 277–284.CrossRefGoogle Scholar
  37. 37.
    S. Eckert, A. Cramer and G. Gerbeth: in R. Moreau, editor, Magnetohydrodynamics, vol. 80, Springer Netherlands, Dordrecht, 2007, , pp. 275–294.CrossRefGoogle Scholar
  38. 38.
    Evonik Industries AG: Technical Information PLEXIGLAS®, Evonik Industries AG, Essen, 2013.Google Scholar
  39. 39.
    N. B. Morley, J. Burris, L. C. Cadwallader and M. D. Nornberg: Rev. Sci. Instrum., 2008, vol. 79, p. 056 107.Google Scholar
  40. 40.
    J. Krautkrämer and H. Krautkrämer: Werkstoffprüfung mit Ultraschall, 5th ed., Springer, Berlin, Heidelberg, 1986.CrossRefGoogle Scholar
  41. 41.
    Signal Processing S.A.: DOP3000-3010 Series User’s Manual, Switzerland, 2017.Google Scholar
  42. 42.
    B. Li and F. Tsukihashi: ISIJ Int., 2006, vol. 46, pp. 1833–1838.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR)DresdenGermany

Personalised recommendations