Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2794–2803 | Cite as

Effect of Al2O3/(B2O3 + Na2O) Ratio on CaO-Al2O3-Based Mold Fluxes: Melting Property, Viscosity, Heat Transfer, and Structure

  • Jian Yang
  • Qi Wang
  • Jianqiang ZhangEmail author
  • Oleg Ostrovski
  • Chen Zhang
  • Dexiang Cai
Article
  • 57 Downloads

Abstract

CaO-Al2O3-based mold fluxes, which are under development for the continuous casting of high-Al steel, contain fluxing compounds, such as Na2O and B2O3. The reaction between [Al] and the fluxing agents in mold fluxes leads to an increase in Al2O3 and a decrease in B2O3 and Na2O concentrations, changing the properties of mold fluxes. The effect of the Al2O3/(B2O3 + Na2O) ratio on the melting properties, viscosity, heat transfer, and structure of the CaO-Al2O3-based mold fluxes is presented in this work. The increase of the Al2O3/(B2O3 + Na2O) ratio in the fluxes raised the melting temperature and high-temperature viscosity of mold fluxes but decreased the heat transfer rate across the flux disks. It also enhanced the degree of polymerization by promoting the formation of 3-D aluminate structure, which accounted for the change of the viscous behavior.

Notes

Acknowledgments

Financial supports from Baosteel-Australia Joint Research and Development Centre (BAJC) (BA16006) and Australian Research Council (ARC) Industrial Transformation Hub (IH140100035) are greatly acknowledged. The authors also would like to acknowledge Dr Aditya Rawal of the NMR Facility within the Mark Wainwright Analytical Centre at the University of New South Wales for NMR support.

References

  1. 1.
    1. O. Grässel, L. Krüger, G. Frommeyer and L. W. Meyer: Int. J. Plasticity., 2000, vol.16, pp. 1391-409.Google Scholar
  2. 2.
    2. D. R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters and D. Raabe: Acta Mater., 2013, vol.61, pp. 494-510.Google Scholar
  3. 3.
    3. K. Sato, M. Ichinose, Y. Hirotsu and Y. Inoue: ISIJ Int., 1989, vol.29, pp. 868-77.Google Scholar
  4. 4.
    4. M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee and Y.-B. Kang: Metall. Mater. Trans. B, 2013, vol.44, pp. 299-308.Google Scholar
  5. 5.
    5. Y.-B. Kang, M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park and H.-G. Lee: Metall. Mater. Trans. B, 2013, vol.44, pp. 309-16.Google Scholar
  6. 6.
    6. J.-W. Cho, K. Blazek, M. Frazee, H. Yin, J. H. Park and S.-W. Moon: ISIJ Int., 2013, vol.53, pp. 62-70.Google Scholar
  7. 7.
    7. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds and M. Frazee: Iron Steel Tech., 2011, vol.8, pp. 232-40.Google Scholar
  8. 8.
    8. Q. Liu, G. Wen, J. Li, X. Fu, P. Tang and W. Li: Ironmak. Steelmak., 2014, vol.41, pp. 292-97.Google Scholar
  9. 9.
    9. J. Yang, J. Zhang, O. Ostrovski, C. Zhang and D. Cai: La Metallurgia Italiana, 2019, vol.1, pp. 12-19.Google Scholar
  10. 10.
    10. K. Morita, K. Kume and N. Sano: Scand. J. Metall., 2002, vol.31, pp. 178-83.Google Scholar
  11. 11.
    11. B. Hallstedl: J. Am. Ceram. Soc., 1990, vol.73, pp. 15-23.Google Scholar
  12. 12.
    T. Wu, S. P. He, Y. T. Guo and Q. Wang: Characterization of minerals, metals, and materials. TMS, San Diego, 2014, pp. 265-70.Google Scholar
  13. 13.
    13. W. Yan, W. Chen, Y. Yang, C. Lippold and A. McLean: Ironmak. Steelmak., 2015, vol.42, pp. 698-704.Google Scholar
  14. 14.
    14. J. Yang, J. Zhang, O. Ostrovski, C. Zhang and D. Cai: Metall. Mater. Trans. B, 2019, vol.50, pp. 291-303.Google Scholar
  15. 15.
    15. D. Xiao, W. Wang and B. Lu: Metall. Mater. Trans. B, 2015, vol.46, pp. 873-81.Google Scholar
  16. 16.
    16. B. Lu and W. Wang: Metall. Mater. Trans. B, 2015, vol.46, pp. 852-62.Google Scholar
  17. 17.
    17. J. Qi, C. Liu and M. Jiang: J. Non-Cryst. Solids, 2017, vol.475, pp. 101-07.Google Scholar
  18. 18.
    18. L. Zhou, H. Li, W. Wang, D. Xiao, L. Zhang and J. Yu: Metall. Mater. Trans. B, 2018, vol.49, pp. 2232-40.Google Scholar
  19. 19.
    19. L. Wang, Y. Cui, J. Yang, C. Zhang, D. Cai, J. Zhang, Y. Sasaki and O. Ostrovski: Steel Res. Int., 2015, vol.86, pp. 670-77.Google Scholar
  20. 20.
    20. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan and G. Hoatson: Magn. Reson. Chem., 2002, vol.40, pp. 70-76.Google Scholar
  21. 21.
    21. G. L. Caër and R. A. Brand: Journal of Physics: Condensed Matter, 1998, vol.10, pp. 10715-74.Google Scholar
  22. 22.
    22. J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya: Metall. Mater. Trans. B, 2017, vol.48, pp. 2077-91.Google Scholar
  23. 23.
    23. J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya: Metall. Mater. Trans. B, 2016, vol.47, pp. 2447-58.Google Scholar
  24. 24.
    24. J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya: ISIJ Int., 2016, vol.56, pp. 574-83.Google Scholar
  25. 25.
    25. K. Gu, W. Wang, L. Zhou, F. Ma and D. Huang: Metall. Mater. Trans. B, 2012, vol.43, pp. 937-45.Google Scholar
  26. 26.
    26. N. Ma, J. You, L. Lu, J. Wang, M. Wang and S. Wan: Inorganic Chemistry Frontiers, 2018, vol.5, pp. 1861-68.Google Scholar
  27. 27.
    27. J. Yang, J. Zhang, O. Ostrovski, C. Zhang and D. Cai: Metall. Mater. Trans. B, 2019, vol.50, pp. 1766-72.Google Scholar
  28. 28.
    28. J. H. Park, D. J. Min and H. S. Song: ISIJ Int., 2002, vol.42, pp. 38-43.Google Scholar
  29. 29.
    29. P. McMillan and B. Piriou: J. Non-Cryst. Solids, 1983, vol.55, pp. 221-42.Google Scholar
  30. 30.
    30. T. S. Kim and J. H. Park: ISIJ Int., 2014, vol.54, pp. 2031-38.Google Scholar
  31. 31.
    31. E. Gao, W. Wang and L. Zhang: J. Non-Cryst. Solids, 2017, vol.473, pp. 79-86.Google Scholar
  32. 32.
    32. J. Gao, G. Wen, T. Huang, B. Bai, P. Tang and Q. Liu: J. Am. Ceram. Soc., 2016, vol.99, pp. 3941-47.Google Scholar
  33. 33.
    33. J. Gao, G. Wen, T. Huang, B. Bai, P. Tang and Q. Liu: J. Non-Cryst. Solids, 2016, vol.452, pp. 119-24.Google Scholar
  34. 34.
    34. G.-H. Kim and I. Sohn: J. Non-Cryst. Solids, 2012, vol.358, pp. 1530-37.Google Scholar
  35. 35.
    35. K. Zheng, Z. Zhang, L. Liu and X. Wang: Metall. Mater. Trans. B, 2014, vol.45, pp. 1389-97.Google Scholar
  36. 36.
    36. J.-Y. Park, G. H. Kim, J. B. Kim, S. Park and I. Sohn: Metall. Mater. Trans. B, 2016, vol.47, pp. 2582-94.Google Scholar
  37. 37.
    37. J. H. Park, D. J. Min and H. S. Song: ISIJ Int., 2002, vol.42, pp. 344-51.Google Scholar
  38. 38.
    38. Y. Sun and Z. Zhang: Metall. Mater. Trans. B, 2015, vol.46, pp. 1549-54.Google Scholar
  39. 39.
    39. R. K. Brow, D. R. Tallant and G. L. Turner: J. Am. Ceram. Soc., 1996, vol.79, pp. 2410-16.Google Scholar
  40. 40.
    40. Y. Kim, Y. Yanaba and K. Morita: J. Am. Ceram. Soc., 2017, vol.100, pp. 5746-54.Google Scholar
  41. 41.
    41. Y. Kim and K. Morita: ISIJ Int., 2014, vol.54, pp. 2077-83.Google Scholar
  42. 42.
    42. E. I. Kamitsos, M. A. Karakassides and G. D. Chryssikos: J Phys. Chem., 1987, vol.91, pp. 1073-79.Google Scholar
  43. 43.
    43. G. H. Kim and I. Sohn: Metall. Mater. Trans. B, 2014, vol.45, pp. 86-95.Google Scholar
  44. 44.
    44. I. J. Hidi, G. Melinte, R. Stefan, M. Bindea and L. Baia: J. Raman. Spectrosc., 2013, vol.44, pp. 1187-94.Google Scholar
  45. 45.
    45. G. Padmaja and P. Kistaiah: J. Phys. Chem. A, 2009, vol.113, pp. 2397-404.Google Scholar
  46. 46.
    46. A. Stamboulis, R. G. Hill and R. V. Law: J. Non-Cryst. Solids, 2004, vol.333, pp. 101-07.Google Scholar
  47. 47.
    47. D. R. Neuville, L. Cormier and D. Massiot: Chem. Geol., 2006, vol.229, pp. 173-85.Google Scholar
  48. 48.
    J. F. Stebbins, S. Kroeker, S. KeunLee and T. J. Kiczenski: J. Non-Cryst. Solids, 2000, vol. 275, pp. 1-6.Google Scholar
  49. 49.
    49. G.-r. Li, H.-m. Wang, Q.-x. Dai, Y.-t. Zhao and J.-s. Li: J. Iron Steel Res. Int., 2007, vol.14, pp. 25-28.Google Scholar
  50. 50.
    50. Y. Lu, G. Zhang, M. Jiang, H. Liu and T. Li: Journal of Environmental Sciences, 2011, vol.23, pp. S167-S69.Google Scholar
  51. 51.
    51. D. J. Min and F. Tsukihashi: Met. Mater. Int., 2017, vol.23, pp. 1-19.Google Scholar
  52. 52.
    52. Z. Wang, Q. Shu and K. Chou: Steel Res. Int., 2013, vol.84, pp. 766-76.Google Scholar
  53. 53.
    53. J. Wei, W. Wang, L. Zhou, D. Huang, H. Zhao and F. Ma: Metall. Mater. Trans. B, 2014, vol.45, pp. 643-52.Google Scholar
  54. 54.
    54. Y. G. Maldonado, F. A. Acosta, A. H. Castillejos and B. G. Thomas: Iron Steel Tech., 2013, vol.10, pp. 65-75.Google Scholar
  55. 55.
    55. L. Zhou, H. Li, W. Wang and J. Chang: Metall. Mater. Trans. B, 2018, vol.49, pp. 3019-29.Google Scholar
  56. 56.
    R. J. O’Malley and J. Neal: Proc. METEC Congress, 1999, Vol. 99, pp. 13-15.Google Scholar
  57. 57.
    57. L. Zhou, W. Wang, D. Huang, J. Wei and J. Li: Metall. Mater. Trans. B, 2012, vol.43, pp. 925-36.Google Scholar
  58. 58.
    J. B. Ferguson and A. Buddington: Am. J. Sci., 1920, vol. 199, pp. 131-40.Google Scholar
  59. 59.
    59. K. Xu, P. Loiseau, G. Aka and J. Lejay: Cryst. Growth Des., 2009, vol.9, pp. 2235-39.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Jian Yang
    • 1
  • Qi Wang
    • 1
  • Jianqiang Zhang
    • 1
    Email author
  • Oleg Ostrovski
    • 1
  • Chen Zhang
    • 2
  • Dexiang Cai
    • 2
  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Baosteel Group Corporation Research InstituteShanghaiChina

Personalised recommendations