Advertisement

The Dissolution of Fe in HCl from the Ilmenite Concentrate; Evaluating the Effect of Operating Parameters and Mutual Interactions

  • Seyed Hosein Lavasani
  • Ebrahim AzimiEmail author
  • Mehdi Nasiri Sarvi
Article
  • 14 Downloads

Abstract

Selective HCl dissolution of ilmenite components for obtaining Ti or titanium dioxide (TiO2) has been highly recognized due to its advantages, greater environmental friendliness, and simplicity, compared to H2SO4 and Cl2 methods. The effect of numerous parameters has been studied with the one-factor-at-a-time method. The present study aimed to evaluate the effect of key operation parameters, such as acid-to-solid ratio (A/S: 5 to 20 mL/g), reaction temperature (T: 70 °C to 100 °C), and acid concentration (A pct: 15 to 30 wt pct), on the dissolution of Fe in HCl solution with the minimum Ti losses to the leachate from its abundant, domestic, and low-cost mineral source (Kahnooj ilmenite concentrate) using central composite design–response surface methodology. After 90 minutes of leaching, the Ti/Fe (pct) in terms of dissolved amounts was selected as the process assessment response function. Based on the conducted experimental and statistical analysis, increasing the levels of parameters in the studied domain leads to an increase in Ti/Fe (pct), in the order of A pct > T > A/S. Two statistically significant mutual interactions between A/S-T and T-A pct, with 95 pct confidence level, were revealed for the first time in this study. The optimization strategy was set to the minimization of Ti/Fe (pct) by considering the objective of study and the selected response function. The A/S, T, and A pct were determined to be 5 mL/g, 70 °C, and 15 pct, respectively, for maximum impurity dissolution and minimum Ti loss to the leachate.

Notes

Acknowledgment

The authors acknowledge access to infrastructure from the Mining Engineering Department, Isfahan University of Technology.

References

  1. 1.
    1. H. Salehi, H. Aghajani, and H. Salimkhani: Chem. Eng. Trans., 2018, vol. 66, pp. 397–402.Google Scholar
  2. 2.
    2. J.A. Ober: USGS (US Geological Survey), Reston, VA, 2018.Google Scholar
  3. 3.
    3. N. El-Hazek, T.A. Lasheen, R. El-Sheikh, and S.A. Zaki: Hydrometallurgy, 2007, vol. 87, pp. 45–50.CrossRefGoogle Scholar
  4. 4.
    4. U. Diebold: Surf. Sci. Rep., 2003, vol. 48, pp. 53–229.CrossRefGoogle Scholar
  5. 5.
    5. E. Quagliarini, F. Bondioli, G.B. Goffredo, A. Licciulli, and P. Munafò: J. Cult. Herit., 2012, vol. 13, pp. 204–09.CrossRefGoogle Scholar
  6. 6.
    6. J. Kasanen, M. Suvanto, and T.T. Pakkanen: J. Appl. Polym. Sci., 2009, vol. 111, pp. 2597–2606.CrossRefGoogle Scholar
  7. 7.
    7. M. Nikolova, A. Genov, S. Valkov, E. Yankov, D. Dechev, N. Ivanov, R. Bezdushnyi, and P. Petrov: J. Phys.: Conf. Ser., 2018, vol. 992, p. 012032.CrossRefGoogle Scholar
  8. 8.
    8. N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, and H.M. Cheng: Adv. Funct. Mater., 2011, vol. 21, pp. 1717–22.CrossRefGoogle Scholar
  9. 9.
    9. J. Lademann, H.J. Weigmann, C. Rickmeyer, H. Barthelmes, H. Schaefer, G. Mueller, and W. Sterry: Skin Pharmacol. Physiol., 1999, vol. 12, pp. 247–56.CrossRefGoogle Scholar
  10. 10.
    10. C. Wang, Q. Li, and R. D. Wang: Mater. Lett., 2004, vol. 58, pp. 1424–26.CrossRefGoogle Scholar
  11. 11.
    11. N.K. Renuka, A.K. Praveen, and K.K. Aravindakshan: Mater. Lett., 2013, vol. 91, pp. 118–20.CrossRefGoogle Scholar
  12. 12.
    12. T. Sreethawong, Y. Suzuki, and S. Yoshikawa: J. Solid State Chem., 2005, vol. 178, pp. 329–38.CrossRefGoogle Scholar
  13. 13.
    13. T. Sugimoto and X. Zhou: J. Coll. Interface Sci., 2002, vol. 252, pp. 347–53.CrossRefGoogle Scholar
  14. 14.
    14. E. Muniz, M. Góes, J. Silva, J.A. Varela, E. Joanni, R. Parra, and P.R. Bueno: Ceram. Int., 2011, vol. 37, pp. 1017–24.CrossRefGoogle Scholar
  15. 15.
    15. T. Peng, D. Zhao, K. Dai, W. Shi, and K. Hirao: Phys. Chem., 2005, vol. 109, pp. 4947–52.Google Scholar
  16. 16.
    16. F. Wu, X. Li, Z. Wang, C. Xu, H. He, A. Qi, X. Yin, and H. Guo: Hydrometallurgy, 2013, vol. 140, pp. 82–88.CrossRefGoogle Scholar
  17. 17.
    17. T. Tao, Q.-Y. Chen, H.-P. Hu, Z.-L. Yin, and Y. Chen: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1232–38.CrossRefGoogle Scholar
  18. 18.
    18. A.R. Gharakhlou and M.N. Sarvi: Mater. Res. Express, 2017, vol. 4, p. 025027.CrossRefGoogle Scholar
  19. 19.
    19. D. Aphairaj, T. Wirunmongkol, S. Pavasupree, and P. Limsuwan: Energy Procedia, 2011, vol. 9, pp. 539–44.CrossRefGoogle Scholar
  20. 20.
    T.H. Nguyen and M.S. Lee: Miner. Process. Extract. Metall. Rev., 2018, pp. 1–17.Google Scholar
  21. 21.
    21. M.J. Gázquez, J.P. Bolívar, R. García-Tenorio, and F. Vaca: J. Hazard. Mater., 2009, vol. 166, pp. 1429–40.CrossRefGoogle Scholar
  22. 22.
    22. X. Wang, C. Li, H. Yue, S. Yuan, C. Liu, S. Tang, and B. Liang: Chin. J. Chem. Eng., 2019, vol. 27, pp. 575–86.CrossRefGoogle Scholar
  23. 23.
    F. Habashi, F. Kamaleddine, and E. Bourricaudy: Conf. Metall. Proc. COM 2014, Montreal, PQ, Canada, 2014.Google Scholar
  24. 24.
    24. C. Li, B. Liang, H. Song, J.-Q. Xu, and X.-Q. Wang: Micropor. Mesopor. Mater., 2008, vol. 115, pp. 293–300.CrossRefGoogle Scholar
  25. 25.
    25. X. Xiong, Z. Wang, F. Wu, X. Li, and H. Guo: Adv. Powder Technol., 2013, vol. 24, pp. 60–67.CrossRefGoogle Scholar
  26. 26.
    26. C. Li, B. Liang, L.H. Guo, and Z.B. Wu: Miner. Eng., 2006, vol. 19, pp. 1430–38.CrossRefGoogle Scholar
  27. 27.
    S. Wahyuningsih, A. Ramelan, E. Pramono, P. Argawan, A. Djatisulistya, F. Firdiyono, E. Sulistiyono, and P. Sari: IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 333, p. 012049.CrossRefGoogle Scholar
  28. 28.
    28. J.H. Braun, A. Baidins, and R.E. Marganski: Progr. Organ. Coat., 1992, vol. 20, pp. 105–38.CrossRefGoogle Scholar
  29. 29.
    29. H. Bordbar, A.A. Yousefi, and H. Abedini: Polyol. J., 2017, vol. 4, pp. 149–73.Google Scholar
  30. 30.
    30. S. Middlemas, Z.Z. Fang, and P. Fan: Hydrometallurgy, 2013, vol. 131, pp. 107–13.CrossRefGoogle Scholar
  31. 31.
    31. W. Zhang, Z. Zhu, and C.Y. Cheng: Hydrometallurgy, 2011, vol. 108, pp. 177–88.CrossRefGoogle Scholar
  32. 32.
    W.P. Duyvesteyn, B.J. Sabacky, D.E.V. Verhulst, P.G. West-Sells, T.M. Spitler, A. Vince, J.R. Burkholder, and B.J.P.M. Huls: U.S. Patent 6375923B1, Washington, DC.Google Scholar
  33. 33.
    G. McNulty: NORM V Int. Conf., Seville, Spain, IAEA, Wien, Austria, pp. 169–89.Google Scholar
  34. 34.
    M.J. Gázquez, J.P. Bolívar, R. Garcia-Tenorio, and F. Vaca: Mater. Sci. Appl., 2014, vol. 2014.Google Scholar
  35. 35.
    T. Hiraki, Y. Maruyama, Y. Suzuki, S. Itoh, and T. Nagasaka: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 729–36.Google Scholar
  36. 36.
    36. C. McKinley and A. Ghahreman: Miner. Process. Extract. Metall., 2018, vol. 127, pp. 157–68.Google Scholar
  37. 37.
    37. B. Liang, C. Li, C. Zhang, and Y. Zhang: Hydrometallurgy, 2005, vol. 76, pp. 173–79.CrossRefGoogle Scholar
  38. 38.
    S.A. Berkovich: U.S. Patent 3903239A.Google Scholar
  39. 39.
    39. M. Imahashi and N. Takamatsu: Bull. Chem. Soc. Jpn., 1976, vol. 49, pp. 1549–53.CrossRefGoogle Scholar
  40. 40.
    40. E. Olanipekun: Hydrometallurgy, 1999, vol. 53, pp. 1–10.CrossRefGoogle Scholar
  41. 41.
    41. L. Wei, H. Hu, Q. Chen, and J. Tan: Hydrometallurgy, 2009, vol. 99, pp. 39–44.CrossRefGoogle Scholar
  42. 42.
    42. C. Sasikumar, D.S. Rao, S. Srikanth, N.K. Mukhopadhyay, and S.P. Mehrotra: Hydrometallurgy, 2007, vol. 88, pp. 154–69.CrossRefGoogle Scholar
  43. 43.
    43. R. Vásquez and A. Molina: Miner. Eng., 2012, vol. 39, pp. 99–105.CrossRefGoogle Scholar
  44. 44.
    44. N. Jabit and G. Senanayake: J. Phys.: Conf. Ser., 2018, vol. 1082, p. 012089.CrossRefGoogle Scholar
  45. 45.
    45. F. Wu, X. Li, Z. Wang, L. Wu, H. Guo, X. Xiong, X. Zhang, and X. Wang: Int. J. Miner. Process., 2011, vol. 98, pp. 106–12.CrossRefGoogle Scholar
  46. 46.
    46. J.P. van Dyk, N.M. Vegter, and P.C. Pistorius: Hydrometallurgy, 2002, vol. 65, pp. 31–36.CrossRefGoogle Scholar
  47. 47.
    47. D. Chateigner: Combined Analysis, John Wiley & Sons, New York, NY, 2013, pp. 41–90.CrossRefGoogle Scholar
  48. 48.
    48. E. Azimi, S. Karimipour, Z. Xu, J. Szymanski, and R. Gupta: Int. J. Coal Prepar. Utiliz., 2017, vol. 37, pp. 12–32.CrossRefGoogle Scholar
  49. 49.
    49. B.N. Akhgar, M. Pazouki, M. Ranjbar, A. Hosseinnia, and R. Salarian: Chem. Eng. Res. Des., 2012, vol. 90, pp. 220–28.CrossRefGoogle Scholar
  50. 50.
    50. N. Aslan: Powder Technol., 2008, vol. 185, pp. 80–86.CrossRefGoogle Scholar
  51. 51.
    51. D.C. Montgomery: Design and Analysis of Experiments, John Wiley & Sons, Hoboken, NJ, 2017, pp. 328–404.Google Scholar
  52. 52.
    52. E. Azimi, S. Karimipour, M. Rahman, J. Szymanski, and R. Gupta: Energy Fuels, 2013, vol. 27, pp. 5595–5606.CrossRefGoogle Scholar
  53. 53.
    53. S. Karimipour, R. Gerspacher, R. Gupta, and R. J. Spiteri: Fuel, 2013, vol. 103, pp. 308–20.CrossRefGoogle Scholar
  54. 54.
    54. Z.R. Lazic: Design of Experiments in Chemical Engineering: a Practical Guide, John Wiley & Sons, New York, NY, 2006, pp. 262–367.Google Scholar
  55. 55.
    55. B. Oraon, G. Majumdar, and B. Ghosh: Mater. Design, 2006, vol. 27, pp. 1035–45.CrossRefGoogle Scholar
  56. 56.
    56. N. Aslan: Powder Technology, 2007, vol. 174, pp. 127–33.CrossRefGoogle Scholar
  57. 57.
    Stat-Ease version 7.0.0, Stat-Ease, Inc., Minneapolis, MN.Google Scholar
  58. 58.
    R. Sen: Int. Res. Process. Environ. Clean Technol., 1997, vol. 68, pp. 263–70.Google Scholar
  59. 59.
    59. R.G. Haverkamp, D. Kruger, and R. Rajashekar: Hydrometallurgy, 2016, vol. 163, pp. 198–203.CrossRefGoogle Scholar
  60. 60.
    60. C. Li, B. Liang, and H. Wang: Hydrometallurgy, 2008, vol. 91, pp. 121–29.CrossRefGoogle Scholar
  61. 61.
    61. T. Lasheen: Hydrometallurgy, 2005, vol. 76, pp. 123–29.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Seyed Hosein Lavasani
    • 1
  • Ebrahim Azimi
    • 1
    Email author
  • Mehdi Nasiri Sarvi
    • 1
  1. 1.Department of Mining EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations