Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2982–2992 | Cite as

Electric Conductivity of TiO2-Ti2O3-FeO-CaO-SiO2-MgO-Al2O3 for High-Titania Slag Smelting Process

  • Kai Hu
  • Xuewei LvEmail author
  • Wenzhou YuEmail author
  • Zhiming Yan
  • Wei Lv
  • Shengping Li


The electric conductivity of high-titania slag of TiO2-Ti2O3-FeO-CaO-SiO2-Al2O3-MgO slag system was measured by means of four-electrode alternating current (AC) impedance method. The results show that high-titania slag exhibits a good electric conductivity, around 45 to 141 S cm−1 with slight dependence on the temperature, which is of several orders of magnitude higher than that of the silicate slags. Further, electric conductivity of high-titania slag decreased with the increasing FeO content, whereas, the increasing Ti3+/Ti4+ and TiO2 contents caused a significant increase in the electric conductivity. Based on the experimental results and the calculated results, the conductive mechanism of high-titania slag was discussed in detail. It can be concluded that the high-titania slag exhibits a characteristic of electronic–ionic mixed conductivity, but the effect of electronic conduction dominates above the liquidus temperature; however, with the decreasing temperature, the electronic conductivity was gradually weakened. The mechanism was postulated to be a random walk of electrons between tetravalent titanium and trivalent titanium dispersed in the melt.



The authors are especially grateful to the National Key R&D Program of China, for their support (No. 2018YFC1900500) and to the Graduate Science Research and Innovation Foundation of Chongqing, China for the Project support (Grant No. CYB19001).


  1. 1.
    1. A. Mitchell and J. Cameron, Metallurgical & Materials Transactions B, 1971, vol. 2, pp. 3361-3366.CrossRefGoogle Scholar
  2. 2.
    2. M. Barati and K. S. Coley, Metallurgical & Materials Transactions B, 2006, vol. 37, pp. 51-60.CrossRefGoogle Scholar
  3. 3.
    3. S. C. Britten and U. B. Pal, Metallurgical & Materials Transactions B, 2000, vol. 31, pp. 733-753.CrossRefGoogle Scholar
  4. 4.
    4. J. H. Liu, G. H. Zhang and K. C. Chou, Canadian Metallurgical Quarterly, 2015, vol. 54, pp. 170-176.CrossRefGoogle Scholar
  5. 5.
    J.H. Liu, G.H. Zhang, and Z. Wang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 3359–63.CrossRefGoogle Scholar
  6. 6.
    6. J. H. Liu, G. H. Zhang, Y. D. Wu and K. C. Chou, Metall. Mater. Trans. B, 2016, vol. 47, pp. 798-803.CrossRefGoogle Scholar
  7. 7.
    7. J. H. Liu, G.-H. Zhang and K.-C. Chou, ISIJ International, 2015, vol. 55, pp. 2325-2331.CrossRefGoogle Scholar
  8. 8.
    8. Y. X. Liu, J. H. Liu, G. H. Zhang, J. L. Zhang and K. C. Chou, High Temperature Materials & Processes, 2007, vol. 37, pp. 9-19.Google Scholar
  9. 9.
    Z.Y. P, Z.Y. Zhou, J.X., and H.D. Wang: Tribol. Lett., 2019, vol. 67, pp. 1–8.Google Scholar
  10. 10.
    10. K. Mori and Y. Matsushita, Tetsu- to- Hagane 1956, vol. 42, pp.1024-1029.CrossRefGoogle Scholar
  11. 11.
    11. H. Inouye, J. Tomlinson and J. Chipman, Transactions of the Faraday Society, 1953, vol. 49, pp. 796-801.CrossRefGoogle Scholar
  12. 12.
    Reznichenko V (1967) Izvest Akad Nauk SSSR Metally 5:43-57Google Scholar
  13. 13.
    13. S. Denisov, V. Degtyarev and V. Reznichenko, Izvest Akad Nauk SSSR, Metally. 1970,Vol. 1, pp. 80-82,Google Scholar
  14. 14.
    14. Y. Nikitin, V. Lopatin and L. Barmin, Steel Ussr, 1973, vol. 3, pp. 122.Google Scholar
  15. 15.
    A. Grau and D. Poggi: Canadian Institute of Mining and Metallurgy, Metallurgical Society of CIM Annual Volume Featuring “Hydrogen in Metals” and “Titanium”, 1978, vol. 17, pp. 97–102.Google Scholar
  16. 16.
    P. Evseev and A. Filippov: Izv. Vyssh. Uchebn. Zaved. Chern. Met., 1967, pp. 55–59.Google Scholar
  17. 17.
    17. K. Narita, T. Onoye, T. Ishii and K. I. Uemura, Tetsu-to-Hagané, 1975, vol. 61, pp. 2943-2951.CrossRefGoogle Scholar
  18. 18.
    18. N. Shinozaki, K. Mizoguchi and Y. Suginohara, J Jpn I Met, 1978, vol. 42, pp. 162-168.CrossRefGoogle Scholar
  19. 19.
    19. H. Sato and F. Sakao, Electrochem, 1958, vol. 26, pp. 560-568.Google Scholar
  20. 20.
    20. K. Mori, Tetsu-to-Hagane, 1960, vol. 46, pp. 134-140.CrossRefGoogle Scholar
  21. 21.
    21. M. Kato and S. Minowa, Transactions of the Iron and Steel Institute of Japan, 1969, vol. 9, pp. 39-46.Google Scholar
  22. 22.
    A.S. Churkin, Y.M. Tsikarev, G.A. Toporishchev, V.I. Lazarev, and G.A. Khasin: Protsessov (Sverdlovsk), 1979, vol. 7, pp. 40–47.Google Scholar
  23. 23.
    D.D. Van de Colf: Thesis, University of Witwatersrand Johannesburg, 1974.Google Scholar
  24. 24.
    H.Y. Shi and J.C. Wang: Iron Steel Vanadium Titan., 1987, pp. 56–60.Google Scholar
  25. 25.
    R. Desrosiers, F. Ajersch, and A. Grau: in 19th Annual Conference of Metallurgists, Halifax, Nova Scotia, August 1980, Canadian Institute of Mining and Metallurgy, Montreal, Canada, pp. 24–27.Google Scholar
  26. 26.
    26. J. Cameron, M. Etienne and A. Mitchell, Metallurgical Transactions, 1970, vol. 1, pp. 1839-1844.CrossRefGoogle Scholar
  27. 27.
    27. S. Wang, G. Li, T. Lou and Z. Sui, Transactions of the Iron & Steel Institute of Japan, 2007, vol. 39, pp. 1116-1119.CrossRefGoogle Scholar
  28. 28.
    28 K. Hu, X. W. Lv, S. P. Li, W. Lv, B. Song and K. Han, Metallurgical & Materials Transactions B, 2018, vol. 49, pp. 1963-1973.CrossRefGoogle Scholar
  29. 29.
    29. P. Evseev, Avtomat. Svarka, 1967, vol. 20, pp. 42-45.Google Scholar
  30. 30.
    30. S. Hara, Transactions of the Iron & Steel Institute of Japan, 2006, vol. 23, pp. 1053-1058.CrossRefGoogle Scholar
  31. 31.
    31. Z. D. Pang, X. Lv, Z. M. Yan, D. Liang and J. Dang, Metallurgical and Materials Transactions B, 2018, vol. 49, pp 1322–1330.Google Scholar
  32. 32.
    32. S. L. Schiefelbein and D. R. Sadoway, Metallurgical and Materials Transactions B, 1997, vol. 28, pp. 1141-1149.CrossRefGoogle Scholar
  33. 33.
    33. X. Lu and F. Li, Transaction of Nonferrous Metals Socienty of China, 2000, vol. 10, pp. 437-439.Google Scholar
  34. 34.
    34. M. Barati and K. S. Coley, Metallurgical & Materials Transactions B, 2006, vol. 37, pp. 41-49.CrossRefGoogle Scholar
  35. 35.
    35 J. H. Liu, G. H. Zhang and Z. Wang, Metallurgical & Materials Transactions B, 2017, vol, 48, pp. 3359-3363.CrossRefGoogle Scholar
  36. 36.
    36. P. C. Pistorius and C. Coetzee, Metallurgical & Materials Transactions B, 2003, vol. 34, pp. 581-588.CrossRefGoogle Scholar
  37. 37.
    37. R. Bartholomew and D. Frankl, Physical Review, 1969, vol. 187, pp. 828-833.CrossRefGoogle Scholar
  38. 38.
    38. R. G. Breckenridge and W. R. Hosler, Phys Rev, 1953, vol. 91, pp. 793-802.CrossRefGoogle Scholar
  39. 39.
    39 J. Nowotny, T. Bak, M. K. Nowotny and L. R. Sheppard, Journal of Physical Chemistry C, 2014, vol. 112, pp. 590-601.CrossRefGoogle Scholar
  40. 40.
    40. R N Blumenthal, J Baukus, W M Hirthe. Journal of the Electrochemical Society, 1967,vol. 2, pp. 172-176.CrossRefGoogle Scholar
  41. 41.
    41. J. Yahia and H. Frederikse, Physical Review, 1961, vol. 123, pp. 1257.CrossRefGoogle Scholar
  42. 42.
    N.A. Fried: Thesis, Massachusetts Institute of Technology, 1996.Google Scholar
  43. 43.
    43. Q. Jiao and N. J. Themelis, Metallurgical Transactions B, 1988, vol. 19, pp. 133-140.CrossRefGoogle Scholar
  44. 44.
    44. M. Earle, Physical Review, 1942, vol. 61, pp. 56-62.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanical TransmissionsChongqing UniversityChongqingP.R. China
  2. 2.School of Materials Science and EngineeringChongqing UniversityChongqingP.R. China
  3. 3.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New MaterialsChongqing UniversityChongqingP.R. China

Personalised recommendations